# Wenzhou YiKun Electric Co., Ltd.





# **ENVIRONMENTAL PRODUCT DECLARATION**

Metal Oxide Surge Arrester: YH10W-12/38 1.17K

**Zhejiang Chin** 

# in compliance with ISO 14025 and $\,$ EN 50693

| Program Operator | EPD China |  |  |  |
|------------------|-----------|--|--|--|
| Publisher        | EPDItaly  |  |  |  |

| Declaration Number  | EPD-CN-00004    |  |  |  |
|---------------------|-----------------|--|--|--|
| Registration Number | MR-EPDITALY0097 |  |  |  |

| Issue Date | 2024-06-27 |  |
|------------|------------|--|
| Valid to   | 2029-06-26 |  |



Registered under the mutual recognition between EPDItaly and EPD China.

www.epditaly.it

# ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 50693 for:

[Metal Oxide Surge Arrester: YH10W-12/38 1.17KG 12KV]

From

[Wenzhou YiKun Electric Co., Ltd.]







# **Declared product:**



| Programme operator:  | EPD China    |  |  |
|----------------------|--------------|--|--|
| Registration number: | EPD-CN-00004 |  |  |
| Issued date:         | 2024-06-27   |  |  |
| Valid until:         | 2029-06-26   |  |  |



# **Programme Information**

| EPD Owner                      | Wenzhou YiKun electric Co., Ltd.                                                                                  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                | NO.88, QIANWANG ROAD, AOJIANG TOWN, PINGYANG COUNTY, WENZHOU CITY, ZHEJIANG PROVINCE, CHINA                       |
|                                | http://www.yikun.cn/                                                                                              |
| Product Name                   | Metal Oxide Surge Arrester: YH10W-12/38 1.17KG 12KV                                                               |
| Production Site                | Zhejiang China                                                                                                    |
| Identification of product      | UNCPC code: 4621                                                                                                  |
| Field of Application           | Circuit installation                                                                                              |
| Programme Operator             | EPD China                                                                                                         |
|                                | Address of Headquarter: Tianping Road, Xuhui District, Shanghai                                                   |
|                                | Website: www.epdchina.cn                                                                                          |
|                                | Email: info@epdchina.cn   secretary@epdchina.cn                                                                   |
| LCA Practitioner               | SGS-CSTC Standards Technical Services Co., Ltd.                                                                   |
| Responsibility                 | The EPD owner has the sole ownership, liability, and responsibility for the EPD                                   |
| Comparability                  | EPDs within same category of product in different programme operator are not                                      |
|                                | suggested to be compared. Full conformance with a PCR allows EPD comparability                                    |
|                                | only when all stages of a life cycle have been considered. However, variations and                                |
|                                | deviations are possible even applying the same PCR.                                                               |
| Liability                      | The EPD owner has the sole ownership, liability, and responsibility for the EPD.                                  |
| Validity                       | The EPD is published on 2024-06-27 and valid to 2029-06-26                                                        |
| LCA Software (version)         | SimaPro 9.5                                                                                                       |
| LCI Dataset (version)          | Ecoinvent 3.9                                                                                                     |
| Year(s) of Primary Data        | 07/2022-06/2023                                                                                                   |
| PCR                            | PCR EPDItaly 007 (Core PCR): Electronic and electrical products and systems,REV 3                                 |
|                                | 13/01/2023                                                                                                        |
|                                | PCR EPDItaly 010: Electronic and electrical products and systems -Insulators, Rev 0                               |
|                                | 16/03/2020                                                                                                        |
|                                | EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems |
| Verification statement accord  |                                                                                                                   |
|                                | he declaration and data according to EN ISO 14025:2010                                                            |
| ☐ internal ☐ externa           |                                                                                                                   |
| Third-party institution verifi | cation: <siyao bureau="" chen,="" veritas=""> Bureau Veritas is an approved certification body</siyao>            |
| accountable for third-party v  | rerification                                                                                                      |
| Approved by: EPD China         |                                                                                                                   |
|                                | lata during EPD validity involves a third-party certification body:                                               |
| ✓ Yes □ No                     |                                                                                                                   |





# 1. General Information

## 1.1 Company information

Wenzhou Yikun Electric Co., Ltd. (referred to Yikun Electric) is a high-new-tech manufacturer specialized in power transmission and distribution equipment. The company was founded on Jun. 6 th, 1994, 286 staff including 43 technicians are serving for Yikun Electric. With more than 10 years' experience, Yikun Electric fulfilled the production line of ZnO varistor, metal oxide surge arrester, fuse cutout, polymer insulator, disconnecting switch, vacuum circuit breaker and etc. Yikun Electric follows the Environmental Management System of ISO 14001 during the manufacture.

The surge arresters for oversea market have passed type test in KEMA Lab, which is the well-known authoritative testing organizations for high-voltage electrical equipment in the world. It is one of the biggest export-oriented manufacturers of surge arrester in China, whose products have been served satisfactorily in Indonesia, Korea, Iran, Vietnam, Malaysia, India, Nepal, Sri Lanka, Turkey, Australia, UK, Spain, Slovenia, Malta, Brazil, Colombia, Venezuela, Kenya, Uganda, South Africa, Egypt, etc. Yikun Electric is ISO9001:2000 certified company and 10 types of surge arresters and 3 types of fuse cutouts have passed type test in KEMA Lab. We are the first company in China to pass KEMA type test based on IEC and ANSI/IEEE standard latest version.

Table 1: Company information

| Manufacturing company name       | Address                                                                                     | Manufacturing country |
|----------------------------------|---------------------------------------------------------------------------------------------|-----------------------|
| Wenzhou Yikun Electric Co., Ltd. | No.88, Qianwang Road, Aojiang Town, Pingyang County, Wenzhou City, Zhejiang Province, China | China                 |

### 1.2 Scope and type of EPD

This study of arrester product includes life cycle information from cradle-to-grave (see Table 1 for reference). The product stage for product includes extraction and processing of raw materials, transportation to the factory and manufacturing processes with packaging and etc. The construction process stage includes transportation of arrester product to the building site from the factory, the later installation phase is included. The use stage is considered. And the end of life stage includes deconstruction, transportation of waste products to final disposition site, disposal and etc, are considered either.



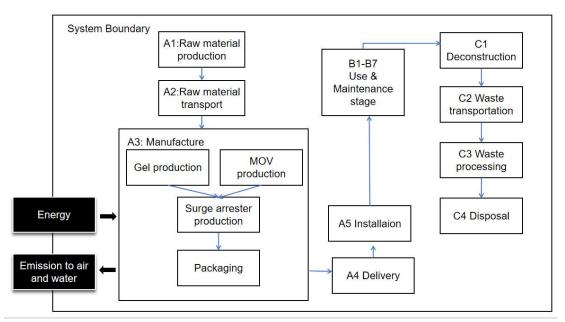



Figure 1: System boundary of arrester

To better illustrate the contents within each module, life cycle stages interpretations and comparison according to the EN 50693 is provided.

Table 2: Life cycle stages in this LCA study

|                    | MANUFACTURING<br>STAGE                                             |             | DISTRIBUTION<br>STAGE | INSTALLATION<br>STAGE | USE &<br>MAINTENANCE<br>STAGE | END-OF-LIFE<br>STAGE<br>DE-INSTALLATION |  |  |  |
|--------------------|--------------------------------------------------------------------|-------------|-----------------------|-----------------------|-------------------------------|-----------------------------------------|--|--|--|
|                    | Upstream<br>Module                                                 | Core Module |                       |                       |                               |                                         |  |  |  |
| Module<br>Declared | X                                                                  | X           | X                     | X                     | X                             | X                                       |  |  |  |
| Note: X=           | Note: X=Declared Module, MND=Module not Declared in this LCA study |             |                       |                       |                               |                                         |  |  |  |

# 2. Detailed Product Description

### Description of the product

Metal oxide surge arrester is mainly used in the electricity field, to protect the high-voltage line equipment from lightning impulse. Metal oxide surge arrester (hereafter referred to "arrester") represents an innovative type of product of arrester, encompassing a product from electrodes, MOV, gel, and FRP tape. It is used to protect transmission, transformation cables, and equipment from atmospheric and operational overvoltage hazards. There is one category of arrest products here in this report, in the type of YH10W-12/38.



www.epdchina.cn





Figure 2: Picture of metal oxide surge arrester

Table 3: Information of product

| Metal oxide surge arrester | Weight (kg) | Nominal discharge | Rated Voltage (kV) | 8/2µs Lightning Impulse         | Reference<br>Voltage (1mA) |
|----------------------------|-------------|-------------------|--------------------|---------------------------------|----------------------------|
| (Type Code)                |             | current<br>( kA)  |                    | Current Residual Voltage<br>≤kV | ≥kV                        |
| YH10W-12/38                | 1.17        | 10                | 12                 | 38                              | 12                         |

### Description of function unit

In this EPD, a declared unit is defined as one metal oxide surge arrester product. And the defined mass of the product per the declared unit is described in 4.

Table 4: Declared unit

| Name                                    | Value | Unit |
|-----------------------------------------|-------|------|
| Declared unit                           | 1     | P    |
| Metal oxide surge arrester (YH0W-12/38) | 1.17  | kg   |
| Component                               |       |      |
| Electrode (68134.1.1-1)                 | 2     | P    |
| MOV (φ40×21)                            | 4     | P    |
| FRP tape (0.33*25)                      | 5.5   | m    |
| FRP tape (0.33*50)                      | 0.75  | m    |
| Glue                                    | 0.455 | kg   |

In order to assess the environmental impacts of different products, it is important that the functions of these products are equivalent so that the results may be interpreted clearly. Note that metal oxide surge arrester product will be mainly used in the electricity field, with a long RSL. The RSL information is provided by the manufacturer, which is 20 years.





### Description of the production processes

A flowchart depicting the production process stages of metal oxide surge arrester is shown in Figure 2 below. For simplification purpose, auxiliary processes that are considered and included in the LCA but not shown in the flow chart below are:

- Transportation of raw material from suppliers and end product to consumers;
- Manufacturing of raw materials and supply of natural gas/water/electricity.

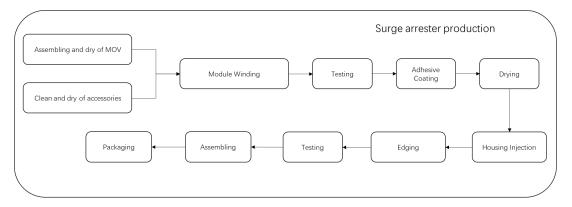



Figure 3: The process diagram of metal oxide surge arrester production

The metal oxide surge arrester is mainly assemble by MOV and gel, further winded by FRP tape. MOV and gel are also produced in the same factory of Yikun Electric. The process diagrams of producing MOV and gel are shown in Figure 3 and Figure 4 respectively, as sub-processes of arrester production.

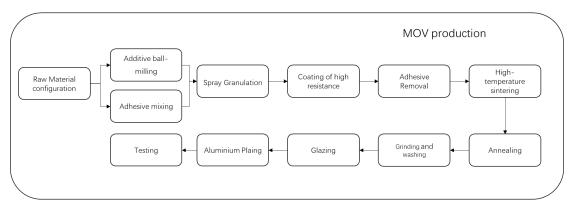



Figure 4: The process diagram of MOV production

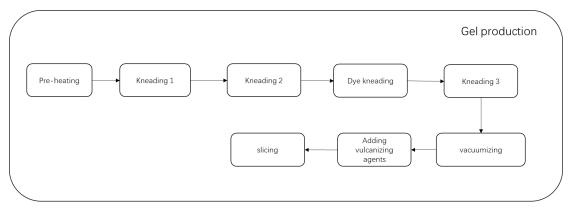



Figure 5: The process diagram of gel production





According to the procurement contracts, all of the raw materials are sourced domestically, the points of departure of raw materials are well recorded and applied in the inventory. The type and ratio/weight of raw materials per product are listed in the table below. For MOV, after it was produced, a test would be conducted and for those who did not pass the test (Figure 4), would be disposed. In one arrester, there are four MOV stacked and adhered by Gel (Figure 3), extra Gel would be shaped and disposed.

Table 5: Main components per unit.

| Raw material                      | Weight (g)               | Ratio (%) |  |
|-----------------------------------|--------------------------|-----------|--|
| Electrode                         | 132.00                   | 11.28%    |  |
| MOV                               | 550.72                   | 47.07%    |  |
| Gel                               | 450.00                   | 38.46%    |  |
| FRP tape                          | 37.28                    | 3.19%     |  |
| Packaging                         | Packaging Amount (piece) |           |  |
| 1.0 Composite panel (244cm×122cm) | 0.007                    |           |  |
| 1.4 Composite panel (244cm×122cm) | 0.007                    |           |  |





# 3. LCA results

# 3.1 Environmental Impacts

The results of the underlying LCA is provided in this section as environmental impacts, resource use, output flows and additional information on biogenic carbon. The selected indicator set is EF3.0.

Table 6: Environmental impacts

|                                               | 11.4                              | T 1       | Upstream  | Core          | Downstream |              |                 |             |
|-----------------------------------------------|-----------------------------------|-----------|-----------|---------------|------------|--------------|-----------------|-------------|
| Impact category                               | Unit                              | Total     | Manufa    | Manufacturing |            | Installation | Use&Maintenance | End-of-life |
| Climate change – total                        | kg CO <sub>2</sub> eq.            | 1.20E+01  | 5.13E+00  | 5.11E+00      | 3.34E-01   | 0.00E+00     | 0.00E+00        | 1.45E+00    |
| Climate change - fossil                       | kg CO <sub>2</sub> eq.            | 1.27E+01  | 5.16E+00  | 5.86E+00      | 2.68E-01   | 0.00E+00     | 0.00E+00        | 1.45E+00    |
| Climate change - biogenic                     | kg CO <sub>2</sub> eq.            | -7.20E-01 | -3.04E-02 | -7.55E-01     | 6.51E-02   | 0.00E+00     | 0.00E+00        | 8.48E-05    |
| Climate change - land use and land use change | kg CO <sub>2</sub> eq.            | 1.25E-02  | 8.41E-03  | 3.70E-03      | 3.36E-04   | 0.00E+00     | 0.00E+00        | 6.98E-05    |
| Ozone Depletion                               | kg CFC 11 eq.                     | 6.21E-06  | 6.19E-06  | 1.30E-08      | 3.41E-09   | 0.00E+00     | 0.00E+00        | 1.60E-09    |
| Acidification                                 | mol H+ eq.                        | 6.80E-02  | 3.13E-02  | 3.03E-02      | 6.10E-03   | 0.00E+00     | 0.00E+00        | 3.66E-04    |
| Eutrophication aquatic freshwater             | kg PO <sub>4</sub> eq.            | 2.35E-03  | 1.22E-03  | 1.10E-03      | 1.42E-05   | 0.00E+00     | 0.00E+00        | 1.49E-05    |
| Photochemical ozone formation                 | kg NMVOC eq.                      | 3.69E-02  | 1.53E-02  | 1.73E-02      | 3.91E-03   | 0.00E+00     | 0.00E+00        | 3.06E-04    |
| Mineral, fossil & ren resource depletion      | kg Sb eq.                         | 7.66E-02  | 7.65E-02  | 7.73E-05      | 3.02E-06   | 0.00E+00     | 0.00E+00        | 1.20E-06    |
| Resource use, fossils                         | MJ, net calorific value           | 1.28E+02  | 6.22E+01  | 6.22E+01      | 3.31E+00   | 0.00E+00     | 0.00E+00        | 5.62E-01    |
| Water use                                     | m <sup>3</sup> world eq. deprived | 3.28E+00  | 2.34E+00  | 8.59E-01      | 1.03E-02   | 0.00E+00     | 0.00E+00        | 6.89E-02    |



## 3.2 Resource use and waste categories

Table 7-1: Resource use categories

| Impact   | Unit           | Upstream | Core     |              | Downstream   |                 |             |          |  |
|----------|----------------|----------|----------|--------------|--------------|-----------------|-------------|----------|--|
| category | Unit           | Manufa   | acturing | Distribution | Installation | Use&maintenance | End-of-life | Total    |  |
| PENRE    | MJ             | 1.14E+01 | 6.53E+01 | 3.46E+00     | 0.00E+00     | 0.00E+00        | 6.00E-01    | 8.08E+01 |  |
| PERE     | MJ             | 8.05E+00 | 6.92E+00 | 3.04E-02     | 0.00E+00     | 0.00E+00        | 4.82E-02    | 1.50E+01 |  |
| PENRM    | MJ             | 5.47E+01 | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 5.47E+01 |  |
| PERM     | MJ             | 0.00E+00 | 6.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 6.00E+00 |  |
| PENRT    | MJ             | 6.60E+01 | 6.53E+01 | 3.46E+00     | 0.00E+00     | 0.00E+00        | 6.00E-01    | 1.35E+02 |  |
| PERT     | MJ             | 8.05E+00 | 1.29E+01 | 3.04E-02     | 0.00E+00     | 0.00E+00        | 4.82E-02    | 2.10E+01 |  |
| FW       | m <sup>3</sup> | 2.34E+00 | 8.59E-01 | 9.72E-03     | 0.00E+00     | 0.00E+00        | 6.89E-02    | 7.47E+00 |  |
| SM       | kg             | 0.00E+00 | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 |  |
| RSF      | MJ             | 0.00E+00 | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 |  |
| NRSF     | MJ             | 0.00E+00 | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 |  |

Caption

1E+01 is equal to 1 x 10<sup>1</sup>

**PENRE**: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; **PERE**: Use of renewable primary energy excluding renewable primary energy resources used as raw materials; **PERM**: Use of renewable primary energy resources used as raw materials; **PERM**: Use of renewable primary energy resources; **PENRT**: Total use of non-renewable primary energy resources; **SM**: Use of secondary materials; **RSF**: Use of renewable secondary fuels; **FW**: Use of non-renewable secondary fuels; **FW**: Use of net fresh water



Programme operator Registration number EPD -CN -00004

Table 7-2: Waste categories

| Impact category | 11:4 | Upstream      | Core     | Downstream   |              |                 | T . 1       |          |
|-----------------|------|---------------|----------|--------------|--------------|-----------------|-------------|----------|
|                 | Unit | Manufacturing |          | Distribution | Installation | Use&maintenance | End-of-life | Total    |
| HWD             | kg   | 1.39E-03      | 3.09E-03 | 5.46E-05     | 0.00E+00     | 0.00E+00        | 1.10E-02    | 1.55E-02 |
| NHWD            | kg   | 1.22E+00      | 4.83E-01 | 5.49E-02     | 0.00E+00     | 0.00E+00        | 3.28E-01    | 2.08E+00 |
| RWD             | kg   | 4.96E-05      | 1.41E-04 | 4.89E-07     | 0.00E+00     | 0.00E+00        | 8.64E-07    | 1.92E-04 |
| MER             | kg   | 0.00E+00      | 0.00E+00 | 1.68E-03     | 0.00E+00     | 0.00E+00        | 2.25E-01    | 2.27E-01 |
| MFR             | kg   | 0.00E+00      | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 4.32E-01    | 4.32E-01 |
| CRU             | kg   | 0.00E+00      | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 |
| ETE             | MJ   | 0.00E+00      | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 |
| EEE             | MJ   | 0.00E+00      | 0.00E+00 | 0.00E+00     | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 |

Caption

1E+01 is equal to  $1 \times 10^1$ 

**HWD** = Hazardous waste disposed; **NHWD** = Non-hazardous waste disposed; **RWD** = Radioactive waste disposed; **CRU** = Components for re-use; **MFR** = Materials for recycling; **MER** = Materials for energy recovery; **EEE** = Exported energy; **EET** = Exported energy Thermal



# 4. Supplementary information

# 4.1 Calculation rules

# Assumptions:

Table 8: The list of assumptions

| Table 8: The list of Categories | Items                       | Assumptions                                                                                                                                                                                                                          |
|---------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                             | The raw material bismuth oxide and antimony trioxide cannot be found in the database, they were substituted by corresponding metal bismuth and antimony respectively, the amounts were transformed accordingly;                      |
| Manufacturing<br>stage          | Materials items             | The raw material dispersant agent, defroster agent, silicone rubber vulcanizing agent, the compositions of these agents were not clear, were substituted by organic chemical, inorganic chemical, and organic chemical respectively; |
|                                 |                             | • The raw material zinc stearate and polyvinyl alcohol are not existed in the current database, were substituted by stearic acid and glycerine;                                                                                      |
|                                 |                             | • The raw material aluminum electrode, used the aluminum ingot to be represented, the potential shaping or mounding process is omitted;                                                                                              |
| Distribution                    | Transportation vehicle type | • For transport without transport, EURO 6 type vehicle with >32 ton capacity is used                                                                                                                                                 |
| stage                           |                             | • The wood pellet was disposed after the arresters are shipped to the South America, the disposal follows the Brazilian way since it is the main market and the situation of Colombia was unknown.                                   |
| Installation stage              | Installation                | The installation of metal oxide surge arrester is assumed to be zero during construction .                                                                                                                                           |
| Use & Maintenance               | Use                         | The use stage requires no energy and materials inputs, and has no emissions.                                                                                                                                                         |
| stage                           | Replacement                 | No replacement for the module as the module has long RSL.                                                                                                                                                                            |
|                                 | De-installation             | The de-construction of metal oxide surge arrester is assumed to be done manually, electricity and materials use the same data like A5 in this stage.                                                                                 |
| De-installation<br>stage        | Waste<br>transportation     | Waste transportation distance from the de-installation plant to the waste treatment facilities is assumed to follow the default distance in the ecoinvent.                                                                           |
| End-of-life stage               | Waste processing            | Disposal scenarios is based on the EN50693 Table G.4 Default values for R1,R2 and R3 to be apply in case of the lack of specific.                                                                                                    |
|                                 | Disposal                    | data.                                                                                                                                                                                                                                |





### **Cut-off rules**

The following procedure was followed for the exclusion of inputs and outputs:

All inputs and outputs to a (unit) process will be included in the calculation for which data is available. Data gaps may be filled by conservative assumptions with average or generic data. Any assumptions for such choices will be documented:

Cut-off criteria were applied to capital equipment production and maintenance. It was assumed that the impacts associated with these aspects were sufficiently small enough to fall below cut-off when it is scaled down to the declared unit.

Material and energy flows known to have the potential to cause significant emissions into air and water or soil related to the environmental indicators of this study will be included in the assessment. So far according to review of the Material Safety Data Sheet and relevant physical, chemical and other information of the flows listed in table above, no significant negative emission to the environment from above listed flows is identified.

#### Allocation

Allocation refers to partitioning of input or output flows of a process or a product system between the product systems under study and one or more other product systems. In this report, in plant recycling for substrate production is considered and assumed as a close loop, meaning all of the environment impact from recycling of substrate scraps, and arrester scraps from cutting and edging treatment and benefit of using recycled material to avoid waste treatment for substrate production are allocated to the process of arrester production.

For recycling and disposal process of waste generated during the manufacturing, as described above, the benefits of recycling and recovery is out of boundary of the product system, and will not be allocated to arrester product.

There is only one targeted product and the metal oxide surge arrester is the only manufactured product in this system boundary. It is declared there is no co-product nor by-product, thus there is no need to allocate among multi-products.

#### **Multi-input processes**

For data sets in this study, all input data corresponded to right processes or products, no allocation is needed. For literature data, the source is generally referred to. In the input part, allocation is applied only in the background data, i.e. energy within the production site such as electricity, and some other raw material such as diesel, emission such as off gas among products, allocation is done via both mass and size of the specific series of product produced on a yearly average. The principle for choosing the mass and size is based on the linear relationship of the product output to the environmental impacts.

### **Multi-output processes**

There is only one targeted product and the metal oxide surge arrester is the only manufactured product in this system boundary. It is declared there is no co-product nor by-product, thus there is no need to allocate among multi-products. In the process of disposing wastes, the allocation within the disposal scenario follows mass allocation, which applies to waste treatment process inventory adopted from Ecoinvent data.

#### **End-of-life allocation**

For end-of-life allocation of background data (energy and materials), the model allocation cut-off by classification (ISO standard) is used. The underlying philosophy of this approach is that primary (first) production of materials is always allocated to the primary user of a material. If material is recycled, the primary producer does not receive





any credit for the provision of any recyclable materials. Consequently, recyclable materials are available burden-free for recycling processes, and secondary (recycled) materials bear only the impacts of the recycling processes.

For end-of-life stage of the metal oxide surge arrester products, the polluter pays principle (PPP) is followed in this report. This means that the waste transportation to the treatment site and the waste processing (mainly shredding) is considered in this report, while the benefit, the load from waste treatment for recycling purposes such as de-pollution and crushing, etc., is allocated to the next life cycle of substituted products, but not the primary producers, hence no burden or benefit will be allocated to the primary producer of the electric products (cut-off approach).

### Data quality

Steps were taken to ensure that the life cycle inventory data were reliable and representative. The type of data that was used is clearly stated in the Inventory Analysis, be it measured or calculated from primary sources or whether data are from the life cycle inventory databases.

According to EN50693, and further required by ISO 14044, 4.2.3.6, the data quality requirements for this study mainly covered four aspects: precision, completeness, representativeness, consistency. For the representativeness, three sub-aspects were followed:

- Existing LCI data were, at most, 10 years old. Newly collected LCI data were current or up to 3 years old.
- The LCI data related to the geographical locations in which the processes occurred, e.g. electricity and transportation data from China.
- The technology represented the average technologies at the time of data collection.

In the study the key parameters for producer-specific foreground data are based on 1 year (06/2022-07/2023) of averaged data. In case of gap of data from Ecoinvent database, to avoid using dummy (empty) or obstacle processes in the study, and also to use as much regional data as possible in some cases, alternative database is also referred to (EI3\_CN\_2018 herein). For more of the data information, please refer to the reference of transparency documentation

#### 4.2 Scenarios and additional technical information

## Raw material acquisition

The raw materials used for producing metal oxide surge arrester are all well recorded, proved by corresponding invoices. The type and ratio/weight of raw materials per product are listed in table 5.

#### Raw materials transportation

The transportation mainly takes place on the upstream of raw material supply and downstream of waste and product delivery. Upstream raw materials are all provided by domestic companies, and the location of suppliers is well recorded, proved by the corresponding contracts. Downstream waste is disposed by domestic companies too, and the location of suppliers is well recorded, proved by the corresponding contracts. Further, both raw materials and waste were transported by road. For waste transportation, the selected load of lorry is based on the waste transport contracts. For raw materials, the max load of lorry is selected since though the declare unit is one arrester, the actual manufacture is mass-production.





Table 9: Transportation of raw material and packaging material

| Material                   | Transport vehicle (lorry, train, flight, ship)* | Distance (km)        |  |  |  |
|----------------------------|-------------------------------------------------|----------------------|--|--|--|
| Raw material               |                                                 |                      |  |  |  |
| Electrode                  | Lorry(>32T)                                     | 28                   |  |  |  |
| FRP tape                   | Lorry(>32T)                                     | 482                  |  |  |  |
| MOV                        | Lorry(>32T)                                     | Details refer to LCA |  |  |  |
| Gel                        | Lorry(>32T)                                     | Details refer to LCA |  |  |  |
| Packaging material         |                                                 |                      |  |  |  |
| 1.0 fiberboard (244*122cm) | Lorry(>32T)                                     | 28                   |  |  |  |
| 1.4 fiberboard (244*122cm) | Lorry(>32T)                                     | 28                   |  |  |  |

# Manufacturing

Metal oxide surge arrester in the type YH10W-12/38 is manufactured in Wenzhou City of Zhejiang Province in China.

The manufacturing process of arrester product is assemble by electrodes, MOV, gel, and FRP tape. The production processes mainly include assembling and dry of MOV, clean and dry of accessories, module winding, testing, adhesive coating, drying, housing injection, edging, testing, assembling, packaging. MOV and Gel are produced by Yikun Electric too, for MOV production, it contains raw material configuration, additive ball-milling, adhesive mixing, spray granulation, coating of high resistance, adhesive removal, high-temperature sintering, annealing, grinding and washing, glazing, aluminium plaing, testing. For gel production, it consists of several kneading processes, with different materials. In specific, gel production involves: pre-heating, kneading 1, kneading 2, kneading 2, kneading 3, vacuumizing, adding vulcanizing agents, slicing.

Table 10: Flows during manufacturing

| Material/Energy/process                | Relevant to area | Amount | Unit  |  |  |
|----------------------------------------|------------------|--------|-------|--|--|
| Input                                  |                  |        |       |  |  |
| Electricity                            | China            | 6.26   | kwh   |  |  |
| Water                                  | China            | 2.9    | kg    |  |  |
| Active carbon                          | China            | 0.63   | g     |  |  |
| 1.0 composite panel (244*122cm)        | China            | 0.007  | Piece |  |  |
| 1.4 composite panel (244*122cm)        | China            | 0.007  | Piece |  |  |
| Output                                 |                  |        |       |  |  |
| Particulates                           | China            | 0.69   | g     |  |  |
| Non-methane volatile organic compounds | China            | 0.65   | g     |  |  |
| COD                                    | China            | 0.33   | g     |  |  |
| Ammonia nitrogen                       | China            | 0.036  | g     |  |  |
| Zinc                                   | China            | 0.095  | g     |  |  |
| Waste gel                              | China            | 0.45   | g     |  |  |
| Waste packaging                        | China            | 0.036  | g     |  |  |
| Input                                  |                  |        |       |  |  |





| Material/Energy/process | Relevant to area Amount |       | Unit |
|-------------------------|-------------------------|-------|------|
| Input                   |                         |       |      |
| Waste packaging barrel  | China                   | 0.007 | g    |
| Waste activated carbon  | China                   | 0.678 | g    |
| Waste mud               | China                   | 22.28 | g    |
| Waste sewage sludge     | China                   | 3.22  | g    |

After checking the production and product substance list, no toxic chemicals and hazardous substances is found in the product. The references consist of: List of Toxic Chemicals Severely Restricted on the Import and Export in China (Circular No. 65 [2005]), Measures for the Administration of Restricted Use of Hazardous Substances in Electrical and Electronic Products (Circular No. 32 [2016]), Substances of very high concern (SVHC) ANNEX XVII (from European Chemicals Agency, EACH).

The transport of waste during the manufacture is included in this phase, table 7 reveals the distance and vehicle applied for transporting the waste.

Table 11: Transportation of waste generated from the manufacture phase

|                        | Vehicle                         | Distance (km) |
|------------------------|---------------------------------|---------------|
| Solid waste            |                                 |               |
| Waste gel              | Lorry(>32T)                     | 1148          |
| Hazardous waste        |                                 |               |
| Waste packaging        | Municipal collection lorry(21T) | 22            |
| Waste packaging barrel | Municipal collection lorry(21T) | 22            |
| Waste activated carbon | Municipal collection lorry(21T) | 22            |
| Waste mud              | Municipal collection lorry(21T) | 360           |
| Waste sewage sludge    | Municipal collection lorry(21T) | 85            |

### Distribution

The produced metal oxide surge arresters are mainly sold to South America, according to the contracts, 80% of products were shipped to Brazil while the rest 20% were shipped to Colombia. Because the transportation is not carried by Yikun electric, the exact distance is impossible to obtain. Therefore, the distribution distance was estimated by Shipping Freshmaker (https://www.cnss.com.cn/), resulting in 12978 and 8945 nautical miles from Wenzhou City (where Yikun electric located) to Brazil and Colombia respectively. Due to the same reason, after the goods arrive ports, the distance and solution of further transportation for retail are unknown, thus the default distance and lorry type were used according to the reference PCR. It should be noted that the quantity considered here not only the goods but the packaging was included. Further, the wood pellet (table 5, packaging) used for packaging was disposed in this stage, the disposal rate was referred to Brazilian way since it is the main market and the situation of Colombia was unknown.

Table 12: Distance of arrester product distribution





| Destination               | Ratio (%) | Distance (nautical mile) | Transport vehicle |
|---------------------------|-----------|--------------------------|-------------------|
| Brazil                    | 80%       | 12978                    | Oversea ship      |
| Colombia                  | 20%       | 8945                     | Oversea ship      |
| Destination               | Ratio (%) | Distance (kilometer)     | Transport vehicle |
| Interior of South America | 100%      | 300                      | Lorry             |

#### Installation

During the installation phase, it is assumed the installation of metal oxide surge arrester is mainly manual, do not need energy consumption, and there is no other consumption.

### Use and maintenance

• B1 Use of the product

There isn't any energy and material consumption in this stage in the site.

• B2 Maintenance of product

This product doesn't need to be maintained, so the consumption is zero.

• B3 Repair of the product

This product doesn't need to be repaired, so the consumption is zero.

• B4 Replacement of the product

During the whole use stage, this product also doesn't need to be repaired, so the consumption is zero.

• B5 Refurbishment of the construction product.

During the whole use stage, this product also isn't refurbished.

B6 Operational energy

The product doesn't consume energy during the whole service life.

• B7 Operational water use

This operational stage, there isn't any water consumption.

#### De-construction

For end-of-life (EoL) stage, assuming that the de-construction and installation stage of the power station is the same, and the energy (electrisity and diesel) used is the same.

## End-of-life

Waste transportation distance from the de-installation plant to the waste treatment facilities (C2) is assumed to follow the default distance in the ecoinvent, for simplification purposes. Modelling of disposal stage (C4) refers to



legal requirements issued by EN50693 Table G.4 Default values for material recycled content, material recovery rate and energy recovery rate.

| Parameter FoL  | Material         | Material      | Energy        | Disposal rate(1-R2-R3), by landfilling  |
|----------------|------------------|---------------|---------------|-----------------------------------------|
| Formula        | recycled content | recovery rate | recovery rate | Disposar fate(1 K2 K3); by fandfilling  |
| Formula        | (R1)             | (R2)          | (R3)          | or incineration without energy recovery |
| Other non-     | 0%               | 60%           | 0%            | 40%                                     |
| ferrous metals |                  |               |               |                                         |
| Rubber         | 0%               | 0%            | 50%           | 50%                                     |

Table 13: Recycling rate

The metal oxide surge arresters consists of mixing rubber and metal oxides. Suppose 50% Waste rubber is incinerated and then buried, and 50% is burned and heated. Metal oxides belong to non-ferrous metals and are treated in 40% landfill and 60% recovery.

### 4.3 Other optional additional environmental information

## Electricity power mix

The grid mix data on electricity of for the site in Wenzhou is based on grid mixes of the State Grid Corporation of China (SGCC). Further, the eastern region was selected (State Grid East China Branch), since Yikun Electric locates at Wenzhou City, which belons to Zhejiang Province and further belongs to the east of China. The data flows were updated in 2022. Yikun Electric did not purchase green electricity and using guarantee of origin for the quantification of the LCA with respect to electricity generation is not involved in this study.

Table 14: Electricity mix used for modelling

| Consumption type    | Electricity process type | Consumption of electricity | Climate change GWP |
|---------------------|--------------------------|----------------------------|--------------------|
|                     |                          | (kwh)                      | (kg CO2 eq)        |
| Electricity use in  | Electricity, low voltage |                            |                    |
| manufacturing stage | {CN-ECGC}  market for    | 6.2559                     | 5.60               |
|                     | electricity, low voltage | 0.2339                     | 5.69               |
|                     | Cut-off,U                |                            |                    |



# 5. References

- EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- PCR EPDItaly007 Electronic and electrical products and systems, rev.3
- EPDItaly010 PCR for Electronic and electrical products and systems -Insulators, Rev. 0, 2020/03/16
- ISO 14025: 2006, Environmental labels and declarations Type III environmental declarations Principles and procedures
- ISO 14040: 2006, Environmental management Life cycle assessment Principles and framework
- ISO 14044: 2006, Environmental management Life cycle assessment Requirements and guidelines
- LCA Report LCA Report for Yikun's metal oxide surge arrester
- Ecoinvent, 2023. Swiss Centre for Life Cycle Assessment, v3.8 (www.ecoinvent.ch).
- PRé Consultants, 2021. Software SimaPro versione 9.5.0.0 (www.pre.nl).
- http://chinese-arrester.com

## Table of nomenclature

| Abbreviation | Explanation                                                                |
|--------------|----------------------------------------------------------------------------|
| ADP          | Abiotic Depletion Potential                                                |
| AP           | Acidification Potential                                                    |
| EP           | Eutrophication Potential                                                   |
| EPD          | Environmental Product Declaration                                          |
| FRP tape     | Fibre reinforced plastic tape                                              |
| GWP          | Global Warming Potential                                                   |
| HWD          | Hazardous waste disposed                                                   |
| ISO          | International Organization for Standardization                             |
| LCA          | Life cycle assessment                                                      |
| LCIA         | Life cycle impact assessment                                               |
| MOV          | Metal oxide varistor                                                       |
| NHWP         | Non-hazardous waste disposed                                               |
| NUFW         | Net use of fresh water                                                     |
| ODP          | Ozone Layer Depletion Potential                                            |
| PCR          | Product Category Rules                                                     |
| PEF          | Production Environmental Footprint                                         |
| PEFCR        | Product Environmental Footprint Category Rules                             |
| POCP         | Photochemical Ozone Creation Potential                                     |
| RSL          | Reference Service Life                                                     |
| RWD          | Radioactive waste disposed                                                 |
| SGCC         | State Grid Corporation of China                                            |
| UNPE         | Use of non-renewable primary energy                                        |
| URPE         | Use of renewable primary energy                                            |
| WDP          | Water (user) deprivation potential, deprivation-weighted water consumption |





# EPD 中国项目 值得信赖

The first EPD Programme Operator registered in China, contributing to the EPD system building in China www.epdchina.cn

