Carlo Gavazzi Controls S.p.A.

Environmental Product Declaration

Product: name: Site Plant:

SHSUT (FIELDBUS) via Safforze, 8 32100 – Belluno (BL)

in compliance with ISO 14025 and EN 50693

Program Operator	EPDItaly
Publisher	EPDItaly
Declaration Number	CGC20240916005
EPDItaly Registration Number	EPDITALY0847
Issue Date	05/12/2024
Valid to	05/12/2029

Informazioni generali

Proprietario EPD	Gavazzi Controls S.p.A., Viale Lunigiana, 46
	20125 - Milano (MI) Italy
	www.gavazzi-automation.com
Sito/i produttivo/i di riferimento	Stabilimento di Belluno: via Safforze, 8, 32100 – Belluno (BL)
Campo di applicazione	Il presente documento si riferisce al dispositivo della famiglia Fieldbus
Programme Operator	EPDItaly - info@epditaly.it
Verifica indipendente	La presente dichiarazione è stata sviluppata secondo il Regolamento EPDItaly; ulteriori informazioni e lo stesso Regolamento sono disponibili al sito www.epditaly.it
	Verifica indipendente della dichiarazione e dei dati svolta secondo ISO 14025:2010 □ _Interna ☑ _Esterna
	Verifica di terza parte eseguita da: ICMQ SpA, via De Castillia, 10 20124 – _Milano (<u>www.icmq.it</u>) Accreditato da Accredia
Codice CPC	46 "Electrical machinery and apparatus"
Contatto aziendale	<u>Giampaolo Tormen,</u> responsabile delle certificazioni nel gruppo Gavazzi.
Supporto tecnico	Aequilibria Srl - SB P.le della Stazione, 8 35131 – Padova - ITALIA
Comparabilità	Dichiarazioni ambientali pubblicate all'interno della stessa categoria di prodotto, ma provenienti da programmi differenti, potrebbero non essere confrontabili. In particolare, EPD di prodotti analoghi possono non essere confrontabili se non conformi alla Normativa tecni ca di riferimento.
Responsabilità	Carlo Gavazzi Controls S.p.A. solleva EPDItaly da qualunque inosservanza della legislazione ambientale. Il titolare della dichiarazione sarà responsabile per le informazioni e gli elementi di prova giustificativi; EPDItaly declina ogni responsabilità riguardo alle informazioni del fabbricante, ai dati e ai risultati della valutazione del ciclo di vita.
Documenti di riferimento	Questa dichiarazione è stata sviluppata seguendo il Regolamento del Programma EPDItaly (Rev.6 del 30/10/2023), disponibile sul sito www.epditaly.it.

	Lo standard EN 50693:2019 rappresenta il riferimento quadro per la PCR "Electronic and electrical products and systems" (PCR EPDItaly007).
PCR – Product Category Rules	Core-PCR: EPDITALY007 "Electronic and electrical product and systems" Rev. 3 del 13/01/2023
Data e revisione del presente documento	05/12/2024

Tabella 1. Informazioni generali dell'EPD

Introduzione

Il presente documento rappresenta lo studio EPD condotto per il dispositivo **SHSUT** prodotto da Carlo Gavazzi Controls S.p.A., in conformità al Programma EPDItaly e al relativo Regolamento, sviluppato conformemente alla ISO 14025 e finalizzato a fornire uno strumento per lo sviluppo, la verifica e la pubblicazione delle Dichiarazioni Ambientali di Prodotto.

Lo studio è stato svolto conformemente alla PCR EPDItaly007 (PCR for electronic and electrical products and systems), che identifica e documenta l'obiettivo ed il campo di applicazione delle informazioni basate sull'LCA per la categoria di prodotto, le regole per la produzione di informazioni ambientali aggiuntive, le fasi del ciclo di vita da includere, i parametri da trattare e il modo nel quale i parametri devono essere raccolti e comunicati in un rapporto.

Informazioni sul produttore e politica ambientale

La società Carlo Gavazzi Controls SpA sviluppa, produce e commercializza relè di monitoraggio, timer, sistemi di gestione dell'energia, sistemi bus di campo, fornendo soluzioni per i mercati dell'automazione industriale, residenziale e commerciale, nell'ambito delle installazioni in bassa tensione.

I prodotti sono commercializzati in Europa, Nord America e Asia-Pacifico attraverso una rete di 22 società di vendita proprie e circa 60 distributori nazionali indipendenti. Carlo Gavazzi Controls dispone di un impianto produttivo a Belluno (via Safforze 8, 32100 – Belluno)

L'azienda è già in possesso delle seguenti certificazioni, emesse da organismi accreditati:

- ISO9001 (dal 1997)
- ISO14001 (dal 2009)

L'azienda Carlo Gavazzi Controls si impegna a ridurre continuamente l'impatto ambientale dei propri prodotti durante l'intero ciclo di vita, attraverso l'implementazione di un processo di progettazione consapevole dell'ambiente basato sui principi della norma EN 62430 e un sistema di gestione ambientale certificato ISO14001. Le affermazioni ambientali dichiarate sono state valutate con un approccio qualitativo sul processo di progettazione consapevole dell'ambiente.

Informazioni sul Prodotto

Il prodotto oggetto di analisi è il dispositivo SHSUT, appartenente alla famiglia Fieldbus, consumo nominale di 0.0164 W (0.0000164 kW), peso 150 g (0.150 kg) incluso imballaggio e manuale. L'unità funzionale adottata è stata definita, sulla base della PCR di riferimento, come un dispositivo, caratterizzato dalla propria potenza di funzionamento a 0.0000164 kW per un tempo di vita (RSL – Reference Service Life") di 10 anni, incluso il suo packaging, e funzionante per tutta la sua vita utile.

L'assemblaggio e il collaudo del prodotto sono eseguiti nel sito produttivo Carlo Gavazzi Controls. In merito alla fase d'uso, il prodotto non richiede manutenzione periodica, è considerato attivo per tutta la vita utile stimata in 10 anni, con un consumo nominale di 0,0164 W alla tensione di 8.2 VCC.

Il dispositivo finito viene poi inviato ai vari centri di distribuzione Gavazzi o, in alcuni casi, direttamente ad un cliente specifico.

Famiglia di prodotti	Fieldbus
Numero identificativo del prodotto	SHSUT
Dati tecnici	Potenza: 0.0164 W (0.0000164 kW)Frequenza: VCC Peso: 0.10601 kg (escluso packaging) Tempo di vita utile (RLS): 10 anni Intensità di corrente: In = n.a., Imax =n.a.
Imballaggio	Peso: 0.04399 kg (43.99 g) Materiale: Cartone e carta

Tabella 2. Informazioni relative al prodotto SHSUT

Materiali e sostanze costituenti il prodotto

La dichiarazione dei materiali è effettuata in accordo alla EN IEC 62474.

I prodotti sono conformi alle restrizioni delle sostanze nella direttiva RoHS dell'UE (2011/65/UE).

Non è noto eventuale contenuto di materiale riciclato nel dispositivo.

Di seguito si riporta la massa totale del prodotto (imballaggio incluso) e le percentuali di peso di ciascuna singola materia prima rispetto il prodotto totale.

Massa totale del dispositivo	0.150 kg (imballaggio incluso)
------------------------------	--------------------------------

Categoria Materia Prima	SCLAM specifica	Descrizione SCLAM	% sul peso totale	% della categoria sul peso totale
PCB	PCB-SEM	Printed circuit boards semplici (fino a due strati)	17.72%	17.72%
Componenti	TRSMD	SMD - Transistors and mosfets	0.005%	0.713%
elettroniche	RESMD	SMD Resistors	0.001%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.003%	
	ICSMD	SMD - Integrated circuits	0.009%	
	CCERS	SMD - Ceramic capacitors	0.003%	
	CCERS	SMD - Ceramic capacitors	0.007%	
	CCERS	SMD - Ceramic capacitors	0.032%	
	CTANS	SMD - Tantalum capacitors	0.100%	
	DDSMD	SMD - Diodes, zeners, leds, transils, rectifier bridges	0.019%	
	DDSMD	SMD - Diodes, zeners, leds, transils, rectifier bridges	0.005%	
	ICSMD	SMD - Integrated circuits	0.010%	
	MICRO	Microprocessors	0.323%	
	ICSMD	SMD - Integrated circuits	0.015%	
	DDSMD	SMD - Diodes, zeners, leds, transils, rectifier bridges	0.069%	
	CCERS	SMD - Ceramic capacitors	0.036%	
	CCERS	SMD - Ceramic capacitors	0.042%	

	_			
	CCERS	SMD - Ceramic capacitors	0.003%	
	RESMD	SMD Resistors	0.003%	
	RESMD	SMD Resistors	0.011%	
SCLAM	TBSTD	Standard terminal blocks	0.14%	2.01%
prodotto				
specifiche	TBSTD	Standard terminal blocks	1.87%	
Cavi				0%
Parti piccole metalliche	MESTD-ST	Standard metal parts steel	1.36%	1.36%
Plastiche	PLCUS-ABS	Custom plastic parts ABS	12.83%	54.69%
	PLCUS-ABS	Custom plastic parts ABS	14.84%	
	PLCUS-ABS	Custom plastic parts ABS	12.97%	
	PLCUS-ABS	Custom plastic parts ABS	12.89%	
	PLSTD-PC	Standard plastic parts polycarbonate	0.00%	
	LAPAC	Packaging labels	1.17%	
Imballaggio	SHEET	Instruction sheets/ manuals	6.11%	27.12%
primario in	BOXES	Carton boxes	2.20%	
carta	BOXES	Carton boxes	18.81%	

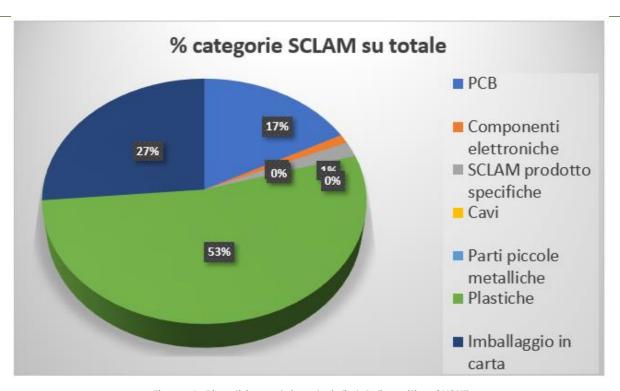


Figura 1. Ripartizione dei materiali del dispositivo **SHSUT**

Informazioni relative allo studio

Confini di sistema	I confini del sistema dello studio sono del tipo " <i>cradle-to-grave</i> ", ossia dalla culla alla tomba.
Validità geografica	Globale
Anno di riferimento dati	2023
Tool di riferimento	La presente EPD è stata generata utilizzando i risultati generati in automatico dal tool Excel "LCA tool_dati 2023_GAV – rev4" del 15/11/2024

Tabella 4. Informazioni relative allo studio

La valutazione dei tutti i potenziali impatti ambientali sopra riportati si basa sull'intero ciclo di vita del prodotto in analisi: produzione, distribuzione, installazione, utilizzo e fine vita.

Di seguito vengono descritti gli elementi ed i processi presi in considerazione per la valutazione degli impatti relativi a ciascuna fase:

Produzione	• materie prime del prod	dotto e dell'imb	allaggio (primario e					
	secondario), materiali ausiliari e relativo trasporto							
	processi di produzione e lavorazione (che comportano consumi							
	energetici e idrici, emissioni in atmosfera, rifiuti generati dalla							
	produzione)							
	 La fonte dell'elettricità da r 	ete utilizzata e ma	ndellizzata ner il sito di					
	produzione è il data relativo d		·					
	•		ano che e pano,647 kg					
D'aldian and an a	CO2 eq/kWh (Ecoinvent 3.10)							
Distribuzione	Il seguente prodotto è speciali distribucione se	allo dile seguenii	planaforme logistiche					
	di distribuzione:							
	DISTRIBUZIONE P	RODOTTO FINIT	O (CdD)					
	Centro di distribuzione % distribuita al prodotto finito % distribuita al CdD Distribuzione ulteriore a livello continentale?							
	CGC-CdD Italia 100.00% Sì							
	CGC-CdD Spagna 0.00% Sì							
	CGC-CdD USA	0.00%	Sì					
	CGC-CdD Canada	0.00%	Sì					
	CGC-CdD Singapore	0.00%	Sì					
	 trasporto dal CdD di Gavazzi al cliente specifico (Ragione Sociale, Nazione) smaltimento del packaging secondario 							
Installazione	fine vita dell'imballaggio pri	imario.						
Fase d'uso e	• categoria di prodotto: Field	bus						
manutenzione	• scenario d'uso: 10 anni di vit	ta utile, funzionam	ento continuo al 100%					
	del carico nominale, potenzo	nominale 0.0164	W.					
Fine vita	Scenario di fine vita del disp	oositivo (RAEE)						

Tabella 5. Processi considerati nelle varie fasi dello studio

Lo studio di LCA è stato svolto in accordo alle norme UNI EN ISO 14040/14044, seguendo le linee guida della IS EN 50693:2019.

Il software utilizzato per la valutazione dell'impatto è SimaPro 9.6.0.1; database Ecoinvent 3.10. I metodi utilizzati per il calcolo degli impatti fanno riferimento al metodo CML baseline e IPCC per la categoria d'impatto sul cambiamento climatico.

Sono stati utilizzati dati sito specifici per tutti i seguenti processi:

- produzione e trasporto delle materie prime dei dispositivi, dei materiali ausiliari e dei materiali del packaging;
- processi di lavorazione, consumi energetici di stabilimento, emissioni in atmosfera e rifiuti;
- peso, potenza del dispositivo;
- trasporto al centro di distribuzione (ultima piattaforma logistica).

Sono stati utilizzati dati generici per:

- tassi di riciclo, recupero energetico e smaltimento per i materiali del packaging primario e secondario e dei RAEE (dati a livello globale).

Sono stati utilizzati gli scenari di default descritti nella PCR 007 per:

- trasporto al punto di vendita: scenario di trasporto intercontinentale e locale;
- Tempo di vita (RLS) del dispositivo: 10 anni.

I potenziali impatti ambientali valutati attraverso una LCA del dispositivo **SHSUT**, sono dati nelle tabelle seguenti.

Gli impatti sono stati calcolati mediante il software SimaPro Developer 9.6.0.1 e il database Ecoinvent 3.10.

			IMPA ⁻	ITO AMBIEN	TALE			
Indicatori di	Unità di misura	Fase di PRO	ODUZIONE	Fase di DISTRIBUZIONE	Fase di INSTALLAZIONE	Fase d'USO e manutenzione	Fase di FINE VITA	Totale
impatto	misura	UPSTREAM CORE module			DOWNSTREAM	module		
GWP (TOT)	kg CO2 eq	2.82E+00	6.98E-01	3.60E-02	2.83E-03	7.95E-01	2.90E- 02	4.38E+00
GWP - Fossil	kg CO2 eq	2.84E+00	7.15E-01	3.40E-02	1.60E-03	7.93E-01	2.90E- 02	4.41E+00
GWP - Biogenic	kg CO2 eq	-2.46E-02	-1.63E-02	2.00E-03	1.23E-03	1.99E-03	-1.05E- 05	-3.58E- 02
GWP - Luluc Land use and Land use change	kg CO2 eq	5.45E-03	2.85E-04	1.47E-05	2.26E-06	1.64E-04	1.34E- 05	5.93E-03
ODP (Ozone depletion)	kg CFC11 eq	7.48E-08	1.69E-08	6.44E-10	1.45E-11	1.39E-08	7.42E- 11	1.06E-07
AP (Acidification)	mol H+ eq	2.04E-02	2.09E-03	9.82E-05	4.14E-06	3.45E-03	3.97E- 05	2.61E-02
EP (Eutrophication, freshwater)	kg P eq	2.31E-03	1.02E-04	2.73E-06	1.37E-07	3.40E-04	2.35E- 06	2.76E-03
EP (Eutrophication, marine)	kg N eq	3.68E-03	4.37E-04	3.14E-05	1.66E-06	6.12E-04	1.23E- 05	4.78E-03
EP (Eutrophication, terrestrial)	mol N eq	3.63E-02	4.52E-03	3.40E-04	1.73E-05	6.08E-03	1.21E- 04	4.73E-02
POCP (Photochemical ozone formation)	kg NMVOC eq	1.19E-02	2.20E-03	1.49E-04	5.83E-06	1.99E-03	3.60E- 05	1.62E-02
ADPE (Resource use, minerals and metals)	kg Sb eq	5.19E-04	1.15E-06	1.40E-07	2.24E-09	6.13E-06	4.55E- 08	5.26E-04
ADPF (Resource use, fossils)	MJ	4.01E+01	1.20E+01	4.56E-01	1.22E-02	1.59E+01	9.10E- 02	6.85E+01
WDP (Water use)	m3 depriv.	8.15E-01	1.79E-01	2.21E-03	2.32E-04	1.32E-01	1.24E- 03	1.13E+00

Tabella 6. Risultati per i vari indicatori di impatto ambientale per il dispositivo SHSUT

	USO DI RISORSE									
Indicatori di impatto	Unità di misura	I FOSA DI PRODUZIONE I FOSA di	Fase d'USO e manutenzione	Fase di FINE VITA	Totale					
		UPSTREAM module	CORE module		DOWNSTREAM	A module				
PENRE	MJ	3.67E+01	1.19E+01	4.56E-01	1.22E-02	1.59E+01	9.10E-02	6.50E+01		
PENRM	MJ	3.43E+00	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.53E+00		
PENRT	MJ	4.35E+01	1.21E+01	4.56E-01	1.22E-02	1.59E+01	9.10E-02	7.20E+01		
PERE	MJ	3.28E+00	-2.82E-01	1.05E-02	1.78E-04	9.20E-01	7.43E-03	3.94E+00		
PERM	MJ	6.34E-01	7.23E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.36E+00		
PERT	MJ	3.91E+00	4.41E-01	1.05E-02	1.78E-04	9.20E-01	7.43E-03	5.29E+00		
FW (Net use of fresh water)	m3	2.53E-02	5.35E-03	7.96E-05	6.11E-06	1.14E-02	4.40E-05	4.22E-02		
MS (use of secondary materials)	kg	5.74E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.74E-04		
RSF (use of renewable secondary fuels)	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
NRSF (Use of non- renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

Legenda: **PENRE** = Uso delle risorse energetiche primarie non rinnovabili escluse le risorse energetiche primarie non rinnovabili usate come materie prime; **PENRM** = Uso di risorse energetiche primarie non rinnovabili come materie prime; **PENRT** = Uso totale delle risorse energetiche primarie non rinnovabili; **PERE** = Uso di energia primaria rinnovabile escluse le risorse energetiche primarie rinnovabili usate come materie prime; **PERM** = Uso di risorse energetiche rinnovabili come materie prime; **PERT** = Uso totale delle risorse energetiche primarie rinnovabili.

Tabella 7. Impatti ambientali relativi al consumo di risorse per il dispositivo SHSUT

Indicatori di impatto	Unità di	di	Fase di PR	ODUZIONE	Fase di DISTRIBUZIONE	Fase di INSTALLAZIONE	Fase d'USO e manutenzione	Fase di FINE VITA	Totale
impano	misura	UPSTREAM module	CORE module		DOWNSTREAM	M module			
Hazardous waste disposal (HWD)	kg	2.27E-03	3.81E-04	6.39E-04	3.90E-04	4.72E-04	1.79E-03	5.94E-03	
Non- hazardous waste disposal (NHWD)	kg	1.39E-01	2.77E-02	3.90E-02	1.89E-02	1.89E-02	2.66E-03	2.46E-01	
Radioactive waste disposal (RWD)	kg	6.53E-05	7.07E-06	2.11E-07	2.64E-09	2.64E-09	1.40E-07	7.27E-05	
Materials for energy recovery (MER)	kg	0.00E+00	0.00E+00	2.72E-03	1.68E-03	0.00E+00	0.00E+00	4.40E-03	
Materials for recycling (MFR)	kg	0.00E+00	2.70E-02	1.37E-02	1.90E-02	0.00E+00	2.44E-02	8.41E-02	
Components for reuse (CRU)	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ETE (exported thermal energy)	MJ	0.00E+00	0.00E+00	7.74E-03	4.80E-03	0.00E+00	0.00E+00	1.25E-02	
EEE (exported electricity energy)	WJ	0.00E+00	0.00E+00	3.77E-03	2.34E-03	0.00E+00	0.00E+00	6.12E-03	

Tabella 8. Impatti ambientali relativi ai rifiuti per il dispositivo SHSUT

Riferimenti

- ISO 14040:2021 Environmental management Life cycle assessment Principles and framework
- ISO 14044:2021 Environmental management Life cycle assessment Requirements and guidelines
- ❖ ISO 14020:2000 Environmental labels and declarations General principles
- UNI EN ISO 14025:2010, Etichette e dichiarazioni ambientali Dichiarazioni ambientali di Tipo
 III Principi e procedure
- EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- Regolamento del Programma EPDItaly Rev. 6 del 30/10/2023
- Core-PCR: EPDITALY007 "Electronic and electrical product and systems" Rev. 3 del 13/01/2023