

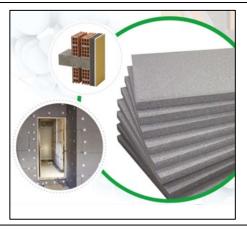
Polyplast S.r.l.

DICHIARAZIONE AMBIENTALE DI PRODOTTO

Lastre ECO-ISOPOLY:

- EPS 80 ECO-ISOPOLY
- EPS 100 ECO-ISOPOLY
- EPS 120 ECO-ISOPOLY
- EPS 150 ECO-ISOPOLY
- EPS 200 ECO-ISOPOLY

Lastre ECO-SILVERPOLY:


- EPS 80 ECO-SILVERPOLY (SILVERTECH – SURFACE 031)
- EPS 100 ECO-SILVERPOLY (SILVERTECH 031 – SURFACE 030)
- EPS 120 ECO-SILVERPOLY
- EPS 150 ECO-SILVERPOLY
- EPS 200 ECO-SILVERPOLY

Lastre ECO-LIGHTBLUE

 EPS 150 ECO-LIGHTBLUE (BASETHERM) Le prestazioni ambientali fanno riferimento al prodotto medio realizzato presso l'impianto di Polyplast S.r.l. di Castilenti (TE)

In conformità alla ISO 14025 e EN 15804:2012+A1:2013/A2:2019

Program Operator	EPDItaly
Publisher	EPDItaly
Numero della dichiarazione	POLY.2023
Numero di Registrazione	EPDITALY0564
Data di rilascio	30/07/2024
Data di scadenza	30/07/2029

www.epditaly.it

WWW.EPDITALY.IT

INFORMAZIONI GENERALI

EPD OWNER	
Nome della società	POLYPLAST S.R.L.
Sede legale	Via Contrada Cancelli, 13, 64035 Castilenti TE, Italia
Contatti per informazioni sull'EPD	Andrea Diodoro - ordini@polyplastsrl.it

PROGRAM OPERATOR	
EPDItaly	Via Gaetano De Castillia n° 10 - 20124 Milano, Italy

INFORMAZIONI SULL'EPD	
Nome prodotto/i	Lastre ECO-ISOPOLY:
Sito/i	Polyplast S.r.l., Castilenti, 64035, TE, Italia
Descrizione sintetica e informazioni tecniche del prodotto/i	Le lastre ISOPOLY, SILVERPOLY ed ECO-LIGHTBLUE (Codice CPC 369) sono pannelli termoisolanti realizzate interamente in polistirene espanso sinterizzato (EPS).
Campo di applicazione del prodotto/i	Le lastre ISOPOLY, SILVERPOLY ed ECO-LIGHTBLUE vengono solitamente utilizzate per l'isolamento termico a cappotto; tuttavia si prestano anche per altre applicazioni, come ad esempio facciate ventilate, isolamento in intercapedine e isolamento in copertura.

INFORMAZIONI SULLA VERIFICA	
PCR (titolo, versione, data di pubblicazione o aggiornamento)	PCR ICMQ-001/15 rev 3 (data di emissione 02/12/2019);
Regolamento EPDItaly (versione, data di pubblicazione o aggiornamento)	Regolamento di EPDItaly versione 6 (data di emissione 30/10/2023).
Project Report LCA	Studio di Life Cycle Assessment delle Lastre ECO-ISOPOLY, ECO- SILVERPOLY ed ECO-LIGHTBLUE - Rev.0.2 – 17/07/2024
Statement Verifica/Validazione Indipendente	La revisione della PCR è stata eseguita da ICMQ S.p.A. e UNIMORE (Università Modena e Reggio Emilia) – info@epditaly.it.
	Verifica indipendente della dichiarazione e dei dati svolta secondo ISO 14025:2010.
	∟ Interna x Esterna
	Verifica/Validazione di terza parte eseguita da: ICMQ S.p.A., via Gaetano De Castillia n° 10 - 20124 Milano, Italia. Accreditato da Accredia.
Statement Comparabilità	Dichiarazioni ambientali pubblicate all'interno della stessa categoria di prodotto, ma provenienti da programmi differenti, potrebbero non essere confrontabili.
	In particolare, EPD di prodotti da costruzione possono non essere confrontabili se non conformi alla EN 5804:2012+A2:2019.
Statement Responsabilità	L'EPD Owner solleva EPDItaly da qualunque inosservanza della legislazione ambientale. Il titolare della dichiarazione sarà responsabile per le informazioni e gli elementi di prova giustificativi. EPDItaly declina ogni responsabilità riguardo alle informazioni, ai dati e ai risultati forniti dall'EPD Owner per la valutazione del ciclo di vita.

INFORMAZIONI SULL'AZIENDA

Dal 1978, Polyplast offre un servizio all'avanguardia su scala nazionale per quanto riguarda la produzione del polistirene espanso. Nati nel 1978 da una iniziativa del Sig. Pasquale Donatelli. Dal 1978 ad oggi ci siamo fatti conoscere ed apprezzare per la nostra struttura produttiva ed operativa costantemente tesa al raggiungimento dell'eccellenza nella qualità e nel servizio al cliente.

Questo processo di crescita ha fatto sì che la Polyplast sia ai giorni nostri tra i primi posti per quanto riguarda i prodotti destinati agli imballaggi industriali, con particolare attenzione agli articoli da destinare alla produzione di isolanti per l'edilizia. La continua ricerca della soddisfazione delle esigenze del cliente ci ha portato a sviluppare al nostro interno tecnici specializzati nella progettazione e realizzazione di articoli in polistirene espanso sinterizzato (EPS) costantemente impegnati a mantenere attivo il processo di miglioramento di sistemi produttivi, acquisendo le più certificazioni di settore.

Figura 1 Vista dello stabilimento

Polyplast ha investito in ricerca, sviluppo e tecnologie in modo da produrre una serie di materiali per l'isolamento termoacustico in polistirene. La proposta è rivolta a tutte le imprese che operano nel settore dell'edilizia e ai rivenditori di materiale da costruzione.

L'azienda è specializzata nella realizzazione di pannelli per la creazione di cappotti termici o sistemi isolanti per solai, tetti e pavimenti. Tutti i manufatti sono certificati secondo gli standard di qualità UE.

Figura 2 Gruppo Polyplast

INFORMAZIONI SUI PRODOTTI POLYPLAST

INFORMAZIONI SUL PRODOTTO ECO-ISOPOLY

Le lastre ECO-ISOPOLY sono pannelli termoisolanti di colore bianco tagliati da blocco a spigolo vivo, realizzate interamente in polistirene espanso sinterizzato (EPS).

Leggere, resistenti agli urti, facili da movimentare, termoisolanti e soprattutto traspiranti, non a caso sono le lastre più utilizzate per l'applicazione a cappotto. Il loro processo produttivo va a garantirgli una superficie ruvida ideali per l'adesione di tutti i componenti del sistema cappotto. Grazie alle caratteristiche dell'EPS e indipendentemente dallo spessore isolante, la conducibilità termica rimane costante e garantisce livelli di isolamento termico molto alti, permettendo la riduzione degli spessori rispetto ad altri materiali isolanti per cappotto. A parità di spessori otterremo invece delle capacità isolanti superiori. I vantaggi economici sono evidenti: minori quantità di materiale per risultati migliori con risparmio di costi e risorse energetiche.

Le lastre ISOPOLY sono realizzate solo con materie prime selezionate e prive di SVHC, marchiate CE secondo la norma europea E N 13163, sottoposte ad un accurato controllo presso i nostri stabilimenti.

Le lastre tagliate da blocco vengono solitamente utilizzate per l'isolamento termico a cappotto; tuttavia si prestano anche per altre applicazioni, come ad esempio facciate ventilate, isolamento in intercapedine, isolamento in copertura.

Figura 2 Immagine ECO-ISOPOLY

TIPOLOGIA DI ICOLANTE	UNITÀ DI			PRODOTTI		
TIPOLOGIA DI ISOLANTE	MISURA	EPS 80 ECO-ISOPOLY	EPS 100 ECO-ISOPOLY	EPS 120 ECO-ISOPOLY	EPS 150 ECO-ISOPOLY	EPS 200 ECO-ISOPOI
Ti Tolleranza sullo spessore	mm	±2	±2	±2	±2	±2
Li Tolleranza sulla lunghezza	mm	±2	±2	±2	±2	±2
Wi Tolleranza sulla larghezza	mm	±2	±2	±2	±2	±2
Si Tolleranza sull'ortogonalità	mm	±2/1000	±2/1000	±2/1000	±2/1000	±2/1000
Pi Tolleranza sulla planarità	mm	4	4	4	4	4
DS(TH)i Stab. dimens. in cond specif. di temp e umi.	%					
DS(N)i Stab. dimens. in cond normaliz. di lab	%	±0,2	±0,2	±0,2	±0,2	±0,2
BS Resistenza alla flessione	Кра	125	150	170	200	250
CS Resistenza alla compressione al 10% di defor.	Кра	≥80	≥ 100	≥ 120	≥ 150	≥ 200
TRi Resistenza alla trazione perpendicol. alle facce	Кра	≥100	≥ 200	≥ 200	≥ 220	≥ 250
WL(T) Assorb. d'acqua x immers. tot in lungo periodo	%vol. val. limite	2,0	3,0	2,0	4,0	5,0
μ Trasmissione al vapore d'acqua x diffusione	*	20-40	30-70	30-70	30-70	40-100
λD Conduttività termica dichiarata	10°C W/(mK)	0,037	0,036	0,034	0,033	0,033
RD Resistenza termica dichiarata	m2K/W val. limite	R=sp./λD	R=sp./λD	R=sp./λD	R=sp./λD	R=sp./λD
Reazione al fuoco	Euroclasse	E	E	E	E	E
	TABEL	LA DI CALCOLO DELLA RES	ISTENZA TERMICA			
SPESSORE DELL'ISOLANTE IN mm.	ISOLANTE	EPS 80 ECO-ISOPOLY	EPS 100 ECO-ISOPOLY	EPS 120 ECO-ISOPOLY	EPS 150 ECO-ISOPOLY	EPS 200 ECO-ISOPO
SPESSORE DELL ISOLANTE IN MIM.		0,037	0,036	0,034	0,033	0,033
20		0,541	0,556	0,588	0,606	0,606
30		0,811	0,833	0,882	0,909	0,909
40		1,081	1,111	1,176	1,212	1,212
50	RESISTENZA TERMICA	1,351	1,389	1,471	1,515	1,515
60	R = sp. / λD =	1,622	1,667	1,765	1,818	1,818
70	m/Kcal/mh°C =	1,892	1,944	2,059	2,121	2,121
80	mqh°C/Kcal	2,162	2,222	2,353	2,424	2,424
90		2,432	2,500	2,647	2,727	2,727
100		2,703	2,778	2,941	3,030	3,030
120		3,243	3,333	3,529	3,636	3,636
	TABELL	A DI CALCOLO DELLA TRASI	MITTANZA TERMICA			
SPESSORE DELL'ISOLANTE IN mm.	ISOLANTE	EPS 80 ECO-ISOPOLY	EPS 100 ECO-ISOPOLY	EPS 120 ECO-ISOPOLY	EPS 150 ECO-ISOPOLY	EPS 200 ECO-ISOPO
STESSORE DELETISCEARTE IN IIIII.		0,037	0,036	0,034	0,033	0,033
20		1,850	1,800	1,700	1,650	1,650
30		1,233	1,200	1,133	1,100	1,100
40		0,925	0,900	0,850	0,825	0,825
50	TRASMITTANZA TERMICA	0,740	0,720	0,680	0,660	0,660
60	K = 1/R =	0,617	0,600	0,567	0,550	0,550
70	1/mqh°C/Kcal/mah°C	0,529	0,514	0,486	0,471	0,471
80		0,463	0,450	0,425	0,413	0,413
90		0,411	0,400	0,378	0,367	0,367
100		0,370	0,360	0,340	0,330	0,330
120		0,308	0,300	0,283	0,275	0,275

INFORMAZIONI SUL PRODOTTO ECO-SILVERPOLY

Le lastre ECO-SILVERPOLY, oltre al ridotto assorbimento di acqua, è l'elevata resistenza meccanica che unita alla bassissima conducibilità termica lo rendono particolarmente versatile in ogni applicazione. Il pannello è stato ideato per tutte le tipologie di coibentazione in cui, oltre ad alte prestazioni termiche, è necessario ottenere anche elevati standard di resistenza meccanica, come ad esempio nel caso di isolamento termico di pavimenti, coperture piane, tetti a falde. Leggere, resistenti agli urti, facili da movimentare, termoi solanti e soprattutto traspiranti.

L'isolamento con le lastre stampate riduce le perdite di energia dell'edificio ed evita la formazione della condensa. La posa in opera è semplice e veloce su ogni tipo di struttura portante ed è compatibile con tutti i manti di copertura.

L'isolamento del pavimento con l'applicazione delle lastre pone un limite alla dispersione termica dell'intero ambiente abitativo o di lavoro. Grazie alle caratteristiche dell'EPS e indipendentemente dallo spessore isolante, la conducibilità termica rimane costante e garantisce livelli di isolamento termico molto alti, permettendo la riduzione degli spessori rispetto ad altri materiali isolanti. A parità di spessori otterremo invece delle capacità isolanti superiori. I vantaggi economici sono evidenti: minori quantità di materiale per risultati migliori con risparmio di costi e risorse energetiche.

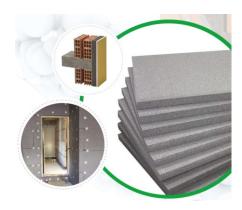


Figura 3 Immagine ECO-SILVERPOLY

TIPOLOGIA DI ISOLANTE	UNITÀ DI	PRODOTTI							
TIPOLOGIA DI ISOLANTE	MISURA	EPS 80 ECO-SILVERPOLY	EPS 100 ECO-SILVERPOLY	EPS 120 ECO-SILVERPOLY	EPS 150 ECO-SILVERPOLY	EPS 200 ECO-SILVERPOL			
Ti Tolleranza sullo spessore	mm	±2	±2	±2	±2	±2			
Li Tolleranza sulla lunghezza	mm	±2	±2	±2	±2	±2			
Wi Tolleranza sulla larghezza	mm	±2	±2	±2	±2	±2			
Si Tolleranza sull'ortogonalità	mm	±2/1000	±2/1000	±2/1000	±2/1000	±2/1000			
Pi Tolleranza sulla planarità	mm	4	4	4	4	4			
DS(TH)i Stab. dimens. in cond specif. di temp e umi.	%								
DS(N)i Stab. dimens. in cond normaliz. di lab	%	±0,2	±0,2	±0,2	±0,2	±0,2			
BS Resistenza alla flessione	Кра	125	150	170	200	250			
CS Resistenza alla compressione al 10% di defor.	Кра	≥ 80	≥ 100	≥ 120	≥ 150	≥ 200			
TRi Resistenza alla trazione perpendicol. alle facce	Кра	≥ 100	≥ 200	≥ 200	≥ 220	≥ 250			
WL(T) Assorb. d'acqua x immers. tot in lungo periodo	%vol. val. limite	2,0	2,0	4,0	2,0	5,0			
μ Trasmissione al vapore d'acqua x diffusione		20-40	30-70	30-70	30-70	40-100			
λD Conduttività termica dichiarata	10°C W/(mK)	0,031	0,031	0,030	0,029	0,029			
RD Resistenza termica dichiarata	m2K/W val. limite	R=sp./λD	R=sp./λD	R=sp./λD	R=sp./λD	R=sp./λD			
Reazione al fuoco	Euroclasse	E	E	E	E	E			
	TABE	LLA DI CALCOLO DELLA RESIS	TENZA TERMICA						
SPESSORE DELL'ISOLANTE IN mm.	ISOLANTE	EPS 80 ECO-SILVERPOLY		EPS 120 ECO-SILVERPOLY	EPS 150 ECO-SILVERPOLY	EPS 200 ECO-SILVERPOI			
SPESSORE DELETSOEARTE IN IIIII.		0,031	0,031	0,030	0,029	0,029			
20		0,645	0,645	0,667	0,690	0,690			
30		0,968	0,968	1,000	1,034	1,034			
40		1,290	1,290	1,333	1,379	1,379			
50	RESISTENZA TERMICA	1,613	1,613	1,667	1,724	1,724			
60	$R = sp. / \lambda D =$	1,935	1,935	2,000	2,069	2,069			
70	m/Kcal/mh°C =	2,258	2,258	2,333	2,414	2,414			
80	mqh°C/Kcal	2,581	2,581	2,667	2,759	2,759			
90		2,903	2,903	3,000	3,103	3,103			
100		3,226	3,226	3,333	3,448	3,448			
120		3,871	3,871	4,000	4.138	4,138			
	TABELL	A DI CALCOLO DELLA TRASMI	ITTANZA TERMICA	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,				
SPESSORE DELL'ISOLANTE IN mm.	ISOLANTE	EPS 80 ECO-SILVERPOLY	EPS 100 ECO-SILVERPOLY	EPS 120 ECO-SILVERPOLY	EPS 150 ECO-SILVERPOLY	EPS 200 ECO-SILVERPOL			
SPESSORE DELL'ISOLANTE IN mm.		0,031	0,031	0.030	0.029	0.029			
20		1,550	1,550	1,500	1,450	1,450			
30		1,033	1,033	1,000	0,967	0,967			
40		0,775	0,775	0,750	0,725	0,725			
50	TRASMITTANZA TERMICA	0,620	0,620	0,600	0,580	0,580			
60	K = 1/R =	0,517	0,517	0,500	0,483	0,483			
70	1/mqh°C/Kcal/mah°C	0,443	0,443	0,429	0,414	0,414			
80		0,388	0,388	0,375	0,363	0,363			
90		0,344	0,344	0,333	0,322	0,322			
100		0,310	0,310	0,300	0,290	0,290			
120		0.258	0,258	0,250	0.242	0,242			

INFORMAZIONI GENERALI

OBIETTIVO DELLO STUDIO

Il presente documento presenta la valutazione dei potenziali impatti ambientali, in ottica di ciclo di vita, associati ai seguenti prodotti realizzati negli stabilimenti Polyplast S.r.l.:

- Lastre ECO-ISOPOLY:
 - EPS 80 ECO-ISOPOLY
 - EPS 100 ECO-ISOPOLY
 - EPS 120 ECO-ISOPOLY
 - EPS 150 ECO-ISOPOLY
 - EPS 200 ECO-ISOPOLY
- Lastre ECO-SILVERPOLY:
 - EPS 80 ECO-SILVERPOLY (SILVERTECH SURFACE 031)
 - EPS 100 ECO-SILVERPOLY (SILVERTECH 031 SURFACE 030)
 - EPS 120 ECO-SILVERPOLY
 - EPS 150 ECO-SILVERPOLY
 - EPS 200 ECO-SILVERPOLY
- Lastre ECO-LIGHTBLUE
 - EPS 150 ECO-LIGHTBLUE (BASETHERM)

Si precisa che i prodotti EPS 80 ECO-SILVERPOLY, EPS 100 ECO-SILVERPOLY ed EPS 150 ECO-LIGHTBLUE sono rispettivamente commercializzati anche con i nomi di SILVERTECH – SURFACE 031, SILVERTECH 031 – SURFACE 030 e BASETHERM ma si tratta del medesimo prodotto.

CONTESTO NORMATIVO DI RIFERIMENTO

Lo studio è stato svolto secondo i principi e i requisiti dei seguenti Standard internazionali e Regola di Prodotto (Product Category Rule):

- o ISO 14040:2006+Amd 1:2020 Environmental management Life cycle assessment Principles and framework
- o ISO 14044:2006+Amd 2:2020 Environmental management Life cycle assessment Requirements and guidelines
- EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction works;
- PCR ICMQ-001/15 rev 3 (data di emissione 02/12/2019);
- o Regolamento di EPDItaly versione 6 (data di emissione 30/10/2023).

CONFINI DEL SISTEMA

Con riferimento alla EN 15804:2012+A2:2019, i confini del sistema includono i moduli A1-A3, C1-C4 e D.

I dettagli dei confini del sistema sono riportati in Figura 6, mentre la seguente sintetizza i moduli dichiarati.

Pro	oduct Sta	age		uction age	Use stage End of life stage				D							
Raw Materials Supply	Transport	Manufacturing	Transport to site	On site processes	Use	Maintence	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/Demolition	Transport	Waste processing	Disposal	Reuse/Recovery/Recycling
A1	A2	А3	A4	A5	В1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
×	×	×	MND	MND	MND	MND	MND	MND	MND	MND	MND	×	×	×	×	×

Polyplast

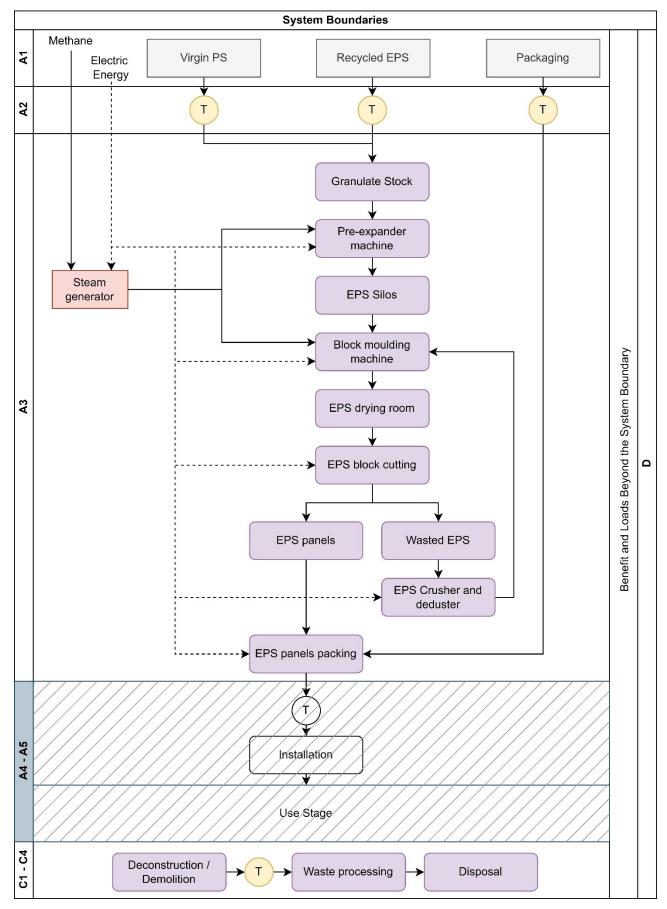


Figura 4 Dettagli dei confini del sistema

DESCRIZIONE DETTAGLIATA DEL PRODOTTO

UNITÀ DICHIARATA

L'unità dichiarata è pari a 1 kg.

I risultati sono riferiti ad un kilogrammo di prodotto rappresentativo dei prodotti con le seguenti caratteristiche:

Codice di identificazione prodotto	Densità ± 10%	u.m.
EPS 80 ECO-ISOPOLY	14-16	Kg/m³
EPS 100 ECO-ISOPOLY	16-18	Kg/m³
EPS 120 ECO-ISOPOLY	18-20	Kg/m³
EPS 150 ECO-ISOPOLY	22-24	Kg/m³
EPS 200 ECO-ISOPOLY	27-29	Kg/m³
EPS 80 ECO-SILVERPOLY	14-16	Kg/m³
EPS 100 ECO-SILVERPOLY	16-18	Kg/m³
EPS 120 ECO-SILVERPOLY	18-20	Kg/m³
EPS 150 ECO-SILVERPOLY	22-24	Kg/m³
EPS 200 ECO-SILVERPOLY	<i>27-29</i>	Kg/m³
EPS 150 ECO-LIGHTBLUE	22-24	Kg/m³

COMPONENTI DEL PRODOTTO

Il prodotto in esame non contiene sostanze incluse nella "Candidate List of Substances of Very High Concern for Authorisation" ai sensi del Regolamento Europeo /REACH/. In accordo alla Gazzetta Ufficiale del 21/01/2016 il prodotto in esame: - non è stato prodotto utilizzando ritardanti di fiamma che siano oggetto di restrizioni o proibizioni previste da normative o comunitarie applicabili - è stato prodotto con una miscela di resina di polistirene espandibile vergine e riciclata.

REFERENCE SERVICE LIFE (RSL)

La durabilità dei pannelli isolanti è normalmente pari alla vita utile dell'edificio all'interno del quale vengono usati. Dati sperimentali mostrano che la service life dei pannelli è generalmente superiore ai 50 anni. La fase di uso non è stata considerata nello studio.

INFORMAZIONI UTILI PER LA RAPPRESENTATIVITÀ DELL'EPD MEDIA

Il prodotto medio risulta rappresentativo delle pratiche produttive degli stabilimenti di Polyplast S.r.l. di Castilenti (TE), Italia.

I prodotti considerati nel presente documento sono stati selezionati perché realizzati con stesse materie prime e stesso processo produttivo. La scelta dell'unità dichiarata riferita a 1kg di prodotto giustifica la rappresentatività media dei risultati.

La raccolta dei dati ha riguardato l'attività dell'anno 2023 dello stabilimento oggetto di studio ed ha riguardato i flussi appartenenti ai confini del sistema considerati.

Il modello di analisi utilizza i dati di attività suddivisi nelle diverse fasi del ciclo di vita nella seguente maniera:

- o A1 A2: Media ponderata (peso distanza) per ogni mezzo di trasporto delle materie prime e materiali per packaging.
- A3: Allocazione dei flussi di input ed output allo stabilimento produttivo allocati su base massa in riferimento al volume produttivo e utilizzo della media dei pesi dei materiali di packaging.

DESCRIZIONE DEI PROCESSI DI PRODUZIONE

Le unità di processo che costituiscono il sistema produttivo analizzato possono essere riassunte nei seguenti punti:

- Preparazione del materiale: Il processo inizia con l'acquisizione ed il successivo stoccaggio del polistirene grezzo, che può essere sotto forma di perle o granuli.
- o Pre-trattamento del materiale: Le perle di polistirene vengono introdotte in un'unità di fusione dove vengono riscaldate ad alte temperature.
- Espansione del polistirene: il polistirene viene miscelato con un agente espansivo, solitamente pentano o butano, che forma bolle di gas all'interno del materiale. Questo processo di espansione aumenta il volume del polistirene e crea la caratteristica struttura a celle chiuse dell'EPS.
- o Formatura del pannello: Il polistirene espanso viene versato in stampi appositamente progettati.
- o Raffreddamento: Il polistirene espanso viene lasciato raffreddare e solidificare. Durante questo processo, il gas all'interno delle celle si raffredda e si solidifica, contribuendo a mantenere la struttura del blocco.
- Taglio e rifinitura: Dopo il raffreddamento, i pannelli vengono tagliati alle dimensioni desiderate e sottoposti a eventuali operazioni di rifinitura per garantire che siano uniformi e privi di difetti. Gli scarti risultanti dal taglio vengono recuperati, lavorati e riciclati nel processo

INDICATORI OBBLIGATORI DI CATEGORIA DI IMPATTO

Categoria d'impatto	Unità	A1+A2+A3	<i>C1</i>	<i>C2</i>	С3	<i>C4</i>	D
GWP-total	kg CO2 eq	6,11E+00	0	1,87E-02	0	1,00E+00	-1,17E+00
GWP-fossil	kg CO2 eq	5,95E+00	0	1,87E-02	0	1,00E+00	-1,17E+00
GWP-biogenic	kg CO2 eq	1,55E-01	0	5,99E-06	0	1,26E-05	-3,89E-03
GWP-luluc	kg CO2 eq	1,49E-03	0	9,14E-06	0	5,79E-06	-2,74E-06
ODP	kg CFC11 eq	1,36E-07	0	4,09E-10	0	3,46E-10	-1,33E-08
AP	mol H+ eq	1,79E-02	0	7,74E-05	0	1,48E-04	-4,25E-03
EP-freshwater	kg P eq	3,57E-04	0	1,32E-06	0	1,82E-06	-3,66E-05
EP-marine	kg N eq	3,53E-03	0	2,95E-05	0	7,15E-04	-6,45E-04
EP-terrestrial	mol N eq	3,61E-02	0	3,15E-04	0	7,22E-04	-6,89E-03
POCP	kg NMVOC eq	2,06E-02	0	1,13E-04	0	1,96E-04	-3,70E-03
ADP-minerals&metals	kg Sb eq	6,33E-06	0	6,04E-08	0	2,74E-08	-1,20E-07
ADP-fossil	MJ	1,26E+02	0	2,67E-01	0	1,68E-01	-2,75E+01
WDP	m3 depriv.	3,06E+00	0	1,09E-03	0	9,87E-03	-9,22E-01

GWP-total Climate change - total GWP-fossil Climate change - fossil GWP-biogenic Climate change - biogenic

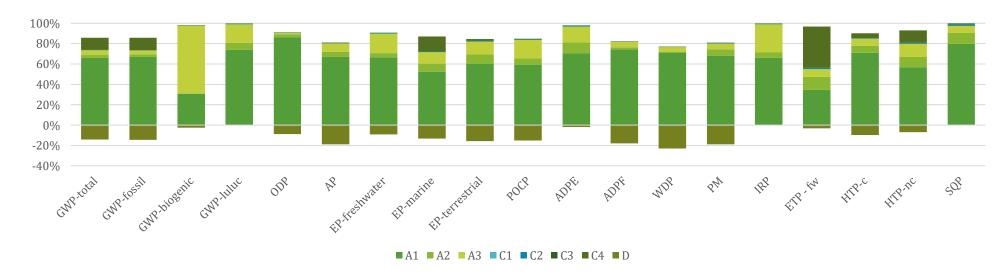
GWP-luluc Climate change - land use and land use change ODP Depletion potential of the stratospheric ozone layer

AP Acidification

EP-freshwater Eutrophication aquatic freshwater
EP-marine Eutrophication aquatic marine
EP-terrestrial Eutrophication terrestrial
POCP Photochemical ozone formation

ADP-minerals&metals² Depletion of abiotic resources - minerals and metals

ADP-fossil² Depletion of abiotic resources - fossil fuels


WDP² Water use

INDICATORI DI IMPATTO AMBIENTALI AGGIUNTIVI

Categoria d'impatto	Unità	A1+A2+A3	<i>C1</i>	<i>C2</i>	С3	<i>C4</i>	D
PM	disease inc.	1,95E-07	0	1,53E-09	0	1,15E-09	-4,59E-08
IRP	kBq U-235 eq	9,26E-02	0	3,57E-04	0	2,38E-04	-2,44E-04
ETP - fw	CTUe	1,39E+01	0	2,63E-01	0	1,03E+01	-8,22E-01
HTP-c	CTUh	2,36E-09	0	1,71E-11	0	1,30E-10	-2,74E-10
HTP-nc	CTUh	3,29E-08	0	3,76E-10	0	5,03E-09	-2,89E-09
SQP	Pt	1,48E+01	0	1,59E-01	0	2,03E-01	-2,40E-02

PM Particulate Matter emissions
IRP¹ Ionizing radiation, human health
ETP – fw Eco-toxicity (freshwater)
HTP-c² Human toxicity, cancer effects
HTP-nc² Human toxicity, non-cancer effects
SQP² Land use related impacts/Soil quality

¹ Questa categoria di impatto riguarda principalmente l'eventuale impatto delle radiazioni ionizzanti a bassa dose sulla salute umana del ciclo del combustibile nucleare. Non considera gli effetti dovuti a possibili incidenti nucleari, all'esposizione professionale né allo smaltimento di rifiuti radioattivi in strutture sotterranee. Anche le potenziali radiazioni ionizzanti provenienti dal suolo, dal radon e da alcuni materiali da costruzione non vengono misurate da questo indicatore.

² I risultati di questi indicatori di impatto ambientale devono essere utilizzati con cautela poiché le incertezze su tali risultati sono elevate e/o l'esperienza con l'indicatore è limitata.

INDICATORI DI UTILIZZO DELLE RISORSE

Indicatore	Unità	A1+A2+A3	<i>C1</i>	<i>C2</i>	С3	<i>C4</i>	D
PERE	MJ	4,68E+00	0	4,14E-03	0	3,90E-03	-1,42E-01
PERM	MJ	0	0	0	0	0	0
PERT	MJ	4,68E+00	0	4,14E-03	0	3,90E-03	-1,42E-01
PENRE	MJ	8,07E+01	0	2,67E-01	0	1,68E-01	-2,75E+01
PENRM	MJ	4,49E+01	0	0	0	0	0
PENRT	MJ	1,26E+02	0	2,67E-01	0	1,68E-01	-2,75E+01
SM	kg	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0
FW	m^3	7,34E-02	0	3,80215E-05	0	3,19E-04	-2,15E-02

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM Use of renewable primary energy resources used as raw materials

PERT Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM Use of non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources (primary energy and resources used as raw materials)

SM Use of secondary material

RSF Use of renewable secondary fuels NRSF Use of non-renewable secondary fuels

FW Net use of fresh water

INDICATORI FLUSSI IN USCITA

Indicatore	Unità	A1+A2+A3	<i>C1</i>	<i>C2</i>	С3	<i>C4</i>	D
CRU	kg	0	0	0	0	0	0
MFR	kg	2,00 E-02	0	0	3,90 E-01	0	0
MER	kg	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0

CRU Components for re-use
MFR Materials for recycling
MER Materials for energy recovery

EE Exported energy (EEE – electrical / EET - thermal)

INFORMAZIONI AMBIENTALI CHE DESCRIVONO LE CATEGORIE DI RIFIUTI

Indicatore	Unità	A1+A2+A3	<i>C1</i>	<i>C2</i>	С3	<i>C4</i>	D
HWD	kg	0	0	0	0	0	0
NHWD	kg	0	0	0	0	0	0
RWD	kg	0	0	0	0	0	0

HWD Hazardous waste disposed NHWD Non-hazardous waste disposed RWD Radioactive waste disposed

La quantificazione degli indicatori relativi ai rifiuti generati è stata effettuate mediante il metodo EDIP 2003, in particolare: per l'indicatore Hazardous waste disposed è stata utilizzata la categoria Hazardous Waste, per l'indicatore Non hazardous waste disposed è stata utilizzata la somma delle due categorie Bulk waste e slag/ashes, mentre per l'indicatore Radioactive waste disposed è stata utilizzata la categoria Radioactive waste.

Questi indicatori tengono conto delle risorse utilizzate e dei rifiuti prodotti durante l'intero ciclo di vita del prodotto dichiarato (processi a monte, principali e a valle). Sono il risultato dell'inventario del ciclo di vita e rappresentano i flussi netti di risorse e rifiuti che attraversano i confini del sistema.

Si noti che i processi di trattamento dei rifiuti devono essere inclusi nei confini del sistema e che l'indicatore dei rifiuti riflette qualsiasi rifiuto rimanente dopo tali processi e il periodo di tempo predefinito di 100 anni.

Si noti inoltre che alcuni set di dati LCI generici aggregati, in particolare quelli del database Ecoinvent, normalmente includono tutti i processi di trattamento dei rifiuti entro i confini del sistema, mentre altri set di dati LCI generici aggregati, come i set di dati Gabi, spesso hanno flussi di rifiuti non trattati che escono dai confini del sistema. Per quest'ultima categoria di set di dati LCI, un processo di trattamento dei rifiuti deve essere aggiunto al sistema del prodotto (se i rifiuti vengono normalmente trattati nella regione rappresentata)

REGOLE DI CALCOLO

ASSUNZIONI

Dichiarazione relativa alla produzione di prodotti simili realizzati nella stessa unità operativa.

CUT-OFF

Il criterio scelto per l'inclusione iniziale degli elementi in ingresso e in uscita si basa sulla definizione di un livello di cut-off dell'5%, sia in termini di massa che di energia. Ciò significa che un processo è stato trascurato se è responsabile di meno del 5% della totale massa e energia primaria. Tuttavia, tutti i processi per i quali i dati sono disponibili, sono stati presi in considerazione, anche se con contributo inferiore al 5%. Di conseguenza tale valore di soglia è stato utilizzato per evitare di raccogliere dati sconosciuti, ma non per trascurare dati comunque a disposizione. Tale scelta è confermata da analoghi studi di LCA riportati in letteratura. Si sottolinea inoltre come la norma EN 15804+A2 preveda al §6.3.7 che la somma degli input esclusi con l'approccio del cut-off non possano essere superiori al 5% del totale del modulo.

QUALITÀ DEI DATI

Nella scelta dei dati da utilizzare per lo studio di LCA sono stati privilegiati dati primari raccolti presso lo stabilimento di Polysplast S.r.l.

I dati primari coprono il periodo gennaio 2023 – dicembre 2023 e riguardano:

- o il trasporto dei materiali in ingresso quali, PS vergine, EPS riciclato, e materiale per il packaging.
- o i processi produzione e dei materiali utilizzati:
 - bilancio di massa produzione
 - consumi energetici
 - processo di riciclo
 - configurazione packaging
- o i rifiuti prodotti presso l'impianto (quantità e destino):

Nel caso in cui non fossero disponibili dati primari o modelli per il calcolo di tali dati, sono stati utilizzati dati secondari ottenuti attraverso la consultazione di banche dati riconosciute a livello internazionale, privilegiando ove possibile l'utilizzo di quelle più aggiornate.

Il livello di qualità dei dati dello studio è stato calcolato adottando la media pesata di 3 parametri di qualità:

- o Ter Rappresentatività tecnologica
- Gr Rappresentatività geografica
- Tir Rappresentatività temporale

Il calcolo è stato applicato a tutti i prodotti oggetto dello studio, considerando la media dei contributi nelle diverse categorie d'impatto. Il DQR (Data Quality Rating) finale in accordo con i livelli di qualità identificati dalla EN 15804 all'Annex E (Table E.2) ottenuto combinando pesi e punteggi risulta essere sempre uguale o superiore a 3, corrispondente ad un livello di qualità "buono".

ALLOCAZIONE

L'allocazione su base massa è stata applicata nei seguenti casi:

- 1. Per ripartire i consumi di energia elettrica
- 2. Per ripartire i consumi di metano e acqua
- 3. Per ripartire le emissioni in atmosfera
- 4. Per ripartire i quantitativi di rifiuti in uscita dallo stabilimento
- 5. Per ripartire il quantitativo di packaging primario del prodotto finito.

L'allocazione dei primi 4 casi sopra elencati si è fatto riferimento alla massa prodotta nei singoli stabilimenti produttivi, mentre per il quinto si è fatto riferimento alla quantità dei codici prodotto venduti.

SCENARI ED ALTRE INFORMAZIONI TECNICHE AGGIUNTIVE

Per quanto riguarda la fase di demolizione - C1 non viene assegnato alcun impatto al prodotto.

Per la fase di trasporto - C2 viene considerata una distanza percorsa di 100 km.

Per le successive fasi viene fatto riferimento ai dati relativi all'attuale situazione di riciclo e recupero dell'EPS dal settore edilizio: AIPE – Associazione Italiana Polistirene Espanso al sito afferma che i rifiuti di EPS post-consumo riguardanti l'edilizia, il 39% è stato recuperato e/o riciclato per un totale di 10.400 tonnellate annue ed il restante 61% non è rientrato in un circuito di recupero. Lo smaltimento finale del prodotto non riciclato è stato considerato per il 50% smaltito in discarica e 50% in incenerimento.

Il Modulo D considera i benefici e i carichi ambientali associati al riciclaggio o al recupero di materiali da costruzione al la fine del loro ciclo di vita.

RIFERIMENTI

AIPE – Associazione Italiana Polistirene Espanso al sito: https://www.aipe.biz/economia-circolare/riciclo/recupero-eps/#:~:text=in%20Italia%20ben%20il%2056,compatto%20per%20oggetti%20in%20PS

CEN, 2019. EN 15804:2012+A2:2019 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products.

European Commission, 2018. Product Environmental Footprint Category Rules Guidance 6.3, s.l.: European Commission.

Frischknecht, R., 2005. The Ecoinvent Database: Overview and MEthodological Framework. International Journal of Life Cycle Assessment, pp. 3-9.

ILCD, 2010. General guide for Life Cycle Assessment. s.l.:JRC European Commission.

ISO, 2020. ISO 14040:2006/Amd 1:2020 Environmental management - Life cycle assessment - Principles and frameword, s.l.: s.n.

ISO, 2020. ISO 14044:2006/Amd 2:2020 Environmental management - Life cycle assessment - Requirements and guidelines, s.l.: s.n.

Studio di Life Cycle Assessment delle Lastre ECO-ISOPOLY, ECO-SILVERPOLY ed ECO-LIGHTBLUE - Rev.0.2 – 17/07/2024