ENVIRONMENTAL PRODUCT DECLARATION RECYCLED PE COMPOUND

ECO PLATFORM	
EPD	
VERIFIED	

PRODUCT NAMES:	R-PE compound			
PRODUCT CODES:	009562 PE EST T 009563 PE INJ 009564 PE R 009697 PE SOFF N			
SITE PLANTS:	Carpeneda di Vobarno (BS)			
PROGRAM OPERATOR	EPDItaly			
PUBLISHER	EPDItaly			
DECLARATION NUMBER	2024RECYCLED-PE0740			
REGISTRATION NUMBER	EPDITALY0740			
ISSUE DATE	26/06/2024			
VALID TO	26/06/2029			

in compliance with ISO 14025 and EN 15804:2012+A2:2019/AC:2021

GENERAL INFORMATION

EPD OWNER: PLANT INVOLVED IN THE DECLARATION:

Valsir S.P.A., Località Merlaro, 2 25078 Vestone (BS)

Valsir Recycling Divison, Via Comunale, 99, 25079 Carpeneda, Vobarno (BS)

This Environmental Product Declaration (EPD) is valid for Valsir Recycled PP compounds product. The production plant is in Vobarno (BS). This EPD refers to 1 kg of regenerated IPE compounds. The products covered by the declaration are:

SCOPE OF APPLICATION:

- PE EST T
- PE INJ
- PE R
- PE SOFF.N

The life cycle assessment is representative for the product introduced in the declaration for the given system boundaries.

PROGRAM OPERATOR:	EPDItaly, via Gaetano De Castillia 10, 20124 Milano, Italia.
	This declaration has been developed referring to EPDItaly, following the General Programme Instruction; further information and the document itself are available at: www.epditaly.it. EPD document valid within the following geographical area: Italy and other countries according to sales market conditions.
	CEN standard EN 15804 served as the core PCR (PCR ICMQ-001/15 rev 3.0). Contact via info@epditaly.it
INDIPENDENT CHECK:	Independent verification of the declaration and data, according to EN ISO 14025:2010.
	Third party verifier: ICMQ SpA, via De Castillia, 10 20124 Milano (www.icmq.it)
	EPD process certification (Internal)
	EPD verification (External)
	Accredited by: Accredia
CPC CODE:	347: Plastic in primary forms
CORPORATE CONTACT:	recycling@valsir.it
TECHNICAL SUPPORT:	Federica Gilardelli, Michele Caimi, LCA Practioners, Greenwich S.r.I. Sede operativa: Via Presolana 2/4, 24030 Medolago (BG) Sede legale: Via Vittorio Emanuele II 179, 24033 Calusco d'Adda - Bergamo. tecnicog4@greenwichsrl.it
COMPARABILITY:	Environmental statements published within the same product category, but from different programs, may not be comparable. In particular, EPDs of construction products may not be comparable if they do not comply with EN 15804.
ACCOUNTABILITY:	Valsir S.p.A relieves EPDItaly from any non-compliance with environmental legislation. The holder of the declaration will be responsible for the information and supporting evidence; EPDItaly declines all responsibility for the manufacturer's information, data and results of the life cycle assessment.
REFERENCE DOCUMENT:	This declaration was developed following the EPDItalia regulation rev. 6.0 published on 20/10/2023 and available on the website www.epditaly.it.
PRODUCT CATEGORY RULES (PCR):	PCR ICMQ-001/15 rev. 3 Construction products and construction services, EPDItaly. Issue date: 12/02/2019.

COMPANY

COMPANY

Valsir was founded in 1987, on the basis of a precise industrial strategy adopted by the Silmar Group - a holding that is leader in the plumbing and heating market with a sales turnover of over 1,515,810,000 Euro and 3,651 employees - with factories in Italy, in Valle Sabbia to the north of Brescia and abroad in Portugal, Poland, Russia, Romania, the Ukraine, France, South Africa and Australia.

Valsir is today a solid and expanding firm within a group whose true points of cohesion and strength lie within a strong sense of collaboration and the contribution of specific professional skills of each single component.

VALSIR - HEADQUARTERS

Location: Vestone (BS)

VALSIR - VOBARNO PRODUCTION PLANT

Location: Vobarno (BS)

VALSIR - CARPENEDA 2 PRODUCTION PLANT INVOLVED IN THE DECLARATION

Location: Carpeneda, Vobarno (Brescia)

VALSIR - CARPENEDA 2 PRODUCTION PLANT

Location: Carpeneda, Vobarno (Brescia)

VALSIR - ROÈ VOLCIANO PRODUCTION PLANT

Location: Roè Volciano (Brescia)

VALSIR - VEROLANUOVA PRODUCTION PLANT

MANAGEMENT CERTIFICATIONS

Location: Verolanuova (Brescia)

1,659,192 m² total surface of which 400,634 m² indoors

> 221,265,763 € turnover

investments

ST STEM CERTINIC

DN

ISO 9001

ISO 9001:2015

Quality management system (In force since 2001)

ISO 50001:2018

Energy management system (In force since 2017 for the plant in Vestone and Vobarno)

ISO 14001:2015

Environmental management systems (In force since 2018 for the plant in Vestone)

SUSTAINABILITY CERTIFICATIONS OF THE VALSIR RECYCLING DIVISION PLANT

n° IT22/99003703 rilasciato da SGS Italia SpA il 10/01/2023

n° REMADE-2 rilasciato da RINA SpA il 02/05/2022

Our products boast "Remade in Italy®" and "Plastica seconda vita®" certification, which quantifies and certifies the amount of recycled material they contain, and ensures complete traceability throughout the entire transformation process.

GOAL AND SCOPE OF EPD

The entire life cycle of the product is considered (Type of EPD: cradle to gate) and the modules described below are declared in this EPD:

- Modules A1-A3 include those processes that provide energy and material input for the system (A1), transport up to the factory gate of the plant (A2), manufacturing processes, packaging materials as well as waste processing and emissions to air from molding and extrusion processes (A3).
- Module C1 considers deconstruction, including dismantling or demolition of the product from the building site. The energy consumption related to such activities is considered.
- Module C2 considers transportation of the discarded piping system to a recycling or disposal process.
- Module C3 considers waste processing for products recycling and incineration.
- Module C4 includes all waste disposal processes, including pre-treatment and management of the disposal site.
- Module D includes benefits from all net flows in the end-of-life stage that leave the product boundary system after having passed the end-of-waste stage. Benefits from packaging incineration (electricity and thermal energy) are declared within module D.

The type of EPD is 'from cradle to gate' and is a specific EPD for recycled PP compounds produced at the Valsir S.p.A. plant in Carpeneda di Vobarno (BS). All data refer to 2022 production and sales.

According to the PCR ICMQ-001/15 rev. 3.0 the LCA study and the relative EPD, is "cradle to gate". Modules included are A1, A2, A3 C1-C4 and D. All manufacturing activities and packaging/auxiliary's production are in module A3, while energy production and input materials are in A1. The end-of-life scenarios, C1-C4 and D, are selected based on a study conducted by the statistical office of the European Union (Eurostat), as documented by the European Parliament.

It is specified that the study is conducted according to the 'Polluter Pays' principle, with reference to what is defined in CEN/TR 16970.

The production facility is in Carpeneda di Vobarno (IT).

PF	RODU	CT	CONSTR	RUCTION S STAGE	USE STAGE			Ē	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES							
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B 6	B7	C1	C2	C3	C4	D
\checkmark	√	√	ND	ND	ND	ND	ND	ND	ND	ND	ND	√	√	\checkmark	√	\checkmark

 \checkmark = modules included in the study.

CALCULATION RULES

EPD TYPE	EPD Product Specification. From the cradle to the gate with C1-C4 modules and module D" (A1-A3+C1-C4+D)
GEOGRAPHICAL VALIDITY	European, considered the reference market. The production site is in Vobarno (BS)
REFERENCE YEAR	2022.
DATABASE USED:	Ecoinvent 3.9.1
SOFTWARE:	SimaPro 9.5.0.1
DECLARED UNITY	1 kg of product
ALLOCATION	mass basis (quantities produced)

It is specified that for the modeling of grid electricity, the Italian national residual mix for 2021 was used, as available in Ecoinvent 3.9.1, with contributions of 0.614 kg CO₂ eq per kWh used.

EXCLUSION RULES AND CUT-OFFS

Exclusions:

- Personnel movements;
- Ordinary and extraordinary maintenance;
- Manufacture of equipment used in production, buildings, or any other fixed asset;
- Research and development activities;
- Long-term emissions.

Cut-offs

• Transport of the finished product packaging.

DATA QUALITY

UPSTREAM phase:

• Site-specific data regarding weight, quantity, raw materials and waste.

CORE phase:

• Site-specific data.

GENERIC DATA

Criteria for:

- Geographical equivalence.
- Technological equivalence.
- Equivalence with respect to system boundaries.

DISPOSAL SCENARIOS

According to the study conducted by the statistical office of the European Union (Eurostat) as reported by the European Parliament.

DATI PROXY

Other ingredients: chemical compounds.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

- Module C1 (Deconstruction / demolition) has been included and deconstruction impacts have been considered.
- Module C2, C3 (recycling and incineration with energy recovery) and C4 (landfilling) consider the end of life scenarios of the products.

The percentages to the given scenarios have been suggested by Eurostatas shown below:

EOL PHASE	MATERIAL	EOL TREATMENT	SOURCE
C1	Waste management - waste transportation	distance of 100 km	practical and statistical considerations
C2	Recycling	32.5%	
	Energy recovery	42.6%	Statistical Office of the European Union
C3	Waste management - Disposal	24.9%	

• Module D consists of loads and benefits beyond the system boundaries.

PRODUCTS DESCRIPTION

1. RECYCLED POLYETHYLENE COMPOUND

Our recycled PE compounds are the result of continuous and ongoing research to maximise the quality and processability performance equal to that of virgin plastics.

Thanks to the know-how developed over the years, our recycling division is able to produce recycled PE compounds in line with customer specifications, without asking for any compromises. We are currently present in several industries that use our products in moulding, extrusion and blow moulding processes.

Thanks to a careful selection of our supply chain and a thorough analysis of the raw materials used in our processes, we are able to offer tailormade solutions in different colors: black, grey, natural and white.

Figure Compound PE range.

Art. 009562 PE EST T

Table Technical data sheet.

COLOR	Black	
PACKAGING	Big Bags	
FORM	Pellets 4-5 mm	
USE	Extrusion	
SOURCE	Post consumer	0000 g

Instructions for use and storage:

To avoid any residual humidity, it is advisable to pre-dry the material.

Processing temperature 190-220°C should be used as a guideline.

Keep away from atmospheric agents and away from humidity to avoid degradation of the product.

Parameters	Test Method	Test Result	Tolerance range in compliance UNI 10667 standard	Unit
Melt flow rate (MFR)	ISO 1133 (190°C/5 kg)	0.65	+/- 20%	g/10 min
Specific Density	ISO 1183 - 1	5	Grade 1: 0.915 a 0.925 Grade 2: 0.926 a 0.935 Grade 3: 0.936 a 0.945 Grade 4: 0.946 a 0.960 Grade 5: >0.960	g/cm³
Melt filtration	N/A	150	Low contamination in accordance with UNI 10667	μm
Tensile Modulus	ISO 527	600	+/- 20%	MPa
Tensile stress at Yield	ISO 527	21	+/- 20%	MPa
Elongation al Yield	ISO 527	12	+/- 20%	%
Elongation at Break	ISO 527	>100	+/- 20%	%
Izod notched impact strenght (23°C)	ISO 180	15	+/- 10%	kJ/m ²
Carbonblack content	ISO 6964	2.5	average	%
Melt temperature	DSC	140	± 3°C	(°C)
PE Presence	DSC	Positive	80%	%
O.I.T. 200°C	ISO 11357	>50	+/- 10%	min

In compliance with UNI 10667-2

IMPORTANT: The information and data contained herein are provided as general information which may be of potential use for the product concerned. They are based on our knowledge at the time of publication. Since the product can be used in different ways by our customers, Valsir S.p.A., shall in no way be held responsible for the results that may be obtained from the transformer using the product in their production processes either alone or in combination with other substances. The information contained herein shall in no event be regarded as a guarantee on the part of assumption of Valsir S.p.A.. The end user must always check the specific suitability of the product for the purposes it is intended for and its compatibility to the specific nature of their production processes. Valsir S.p.A. shall in no event be liable if the purchaser fails to fulfill its obligations due to the recommendations indicated herein.

Art. 009563 PE INJ

Table Technical data sheet.

COLOR	Black	
PACKAGING	Big Bags	
FORM	Pellets 4-5 mm	
USE	Injection moulding	
SOURCE	Post consumer	-050G

Instructions for use and storage:

To avoid any residual humidity, it is advisable to pre-dry the material.

Processing temperature 190-220°C should be used as a guideline.

Keep away from atmospheric agents and away from humidity to avoid degradation of the product.

Parameters	Test Method	Test Result	Tolerance range in compliance UNI 10667 standard	Unit
Melt flow rate (MFR)	ISO 1133 (190°C/2.16 kg)	4	+/- 20%	g/10 min
Melt flow rate (MFR)	ISO 1133 (190°C/5 kg)	11	+/- 20%	g/10 min
Specific Density	ISO 1183 - 1	4	Grade 1: 0.915 a 0.925 Grade 2: 0.926 a 0.935 Grade 3: 0.936 a 0.945 Grade 4: 0.946 a 0.960 Grade 5: >0.960	g/cm³
Melt filtration	N/A	150	Low contamination in accordance with UNI 10667	μm
Tensile Modulus	ISO 527	700	+/- 20%	MPa
Tensile stress at Yield	ISO 527	20	+/- 20%	MPa
Izod notched impact strenght (23°C)	ISO 180	4	+/- 10%	kJ/m ²
Melt temperature	DSC	135	± 3°C	(°C)
PE Presence	DSC	Positive	80%	%

In compliance with UNI 10667-2

IMPORTANT: The information and data contained herein are provided as general information which may be of potential use for the product concerned. They are based on our knowledge at the time of publication. Since the product can be used in different ways by our customers, Valsir S.p.A., shall in no way be held responsible for the results that may be obtained from the transformer using the product in their production processes either alone or in combination with other substances. The information contained herein shall in no event be regarded as a guarantee on the part of assumption of Valsir S.p.A.. The end user must always check the specific suitability of the product for the purposes it is intended for and its compatibility to the specific nature of their production processes. Valsir S.p.A. shall in no event be liable if the purchaser fails to fulfill its obligations due to the recommendations indicated herein.

Art. 009564 PE R

Table Technical data sheet.

COLOR	Black
PACKAGING	Big Bags
FORM	Pellets 4-5 mm
USE	Extrusion
SOURCE	Pre e Post consumer

Instructions for use and storage:

To avoid any residual humidity, it is advisable to pre-dry the material.

Processing temperature 190-220°C should be used as a guideline.

Keep away from atmospheric agents and away from humidity to avoid degradation of the product.

Parameters	Test Method	Test Result	Tolerance range in compliance UNI 10667 standard	Unit
Melt flow rate (MFR)	ISO 1133 (190°C/5 kg)	1	+/- 20%	g/10 min
Specific Density	ISO 1183 - 1	4	Grade 1: 0.915 a 0.925 Grade 2: 0.926 a 0.935 Grade 3: 0.936 a 0.945 Grade 4: 0.946 a 0.960 Grade 5: >0.960	g/cm³
Melt filtration	N/A	150	Low contamination in accordance with UNI 10667	μm
Tensile Modulus	ISO 527	500	+/- 20%	MPa
Tensile stress at Yield	ISO 527	19	+/- 20%	MPa
Izod notched impact strenght (23°C)	ISO 180	20	+/- 10%	kJ/m ²
O.I.T. 200°C	ISO 11357	>50	+/- 10%	min
Melt temperature	DSC	137	± 3°C	(°C)
PE Presence	DSC	Positive	80%	%

In compliance with UNI 10667-2

IMPORTANT: The information and data contained herein are provided as general information which may be of potential use for the product concerned. They are based on our knowledge at the time of publication. Since the product can be used in different ways by our customers, Valsir S.p.A., shall in no way be held responsible for the results that may be obtained from the transformer using the product in their production processes either alone or in combination with other substances. The information contained herein shall in no event be regarded as a guarantee on the part of assumption of Valsir S.p.A.. The end user must always check the specific suitability of the product for the purposes it is intended for and its compatibility to the specific nature of their production processes. Valsir S.p.A. shall in no event be liable if the purchaser fails to fulfill its obligations due to the recommendations indicated herein.

Art. 009697 PE SOFF N

Table Technical data sheet.

COLOR	Neutral	0
PACKAGING	Big Bags	22222
FORM	Pellets 4-5 mm	
USE	Extrusion-Blow moulding	
SOURCE	Pre consumer	00 2000 000

Instructions for use and storage:

To avoid any residual humidity, it is advisable to pre-dry the material.

Processing temperature 190-220°C should be used as a guideline.

Keep away from atmospheric agents and away from humidity to avoid degradation of the product.

Parameters	Test Method	Test Result	Tolerance range in compliance UNI 10667 standard	Unit
Melt flow rate (MFR)	ISO 1133 (190°C/5 kg)	1	+/- 20%	g/10 min
Specific Density	ISO 1183 - 1	4	Grade 1: 0.915 a 0.925 Grade 2: 0.926 a 0.935 Grade 3: 0.936 a 0.945 Grade 4: 0.946 a 0.960 Grade 5: >0.960	g/cm³
Melt filtration	N/A	80	Low contamination in accordance with UNI 10667	μm
Tensile Modulus	ISO 527	600	+/- 20%	MPa
Tensile stress at Yield	ISO 527	20	+/- 20%	MPa
Izod notched impact strenght (23°C)	ISO 180	15	+/- 10%	kJ/m ²
Melt temperature	DSC	142	± 3°C	(°C)
PE Presence	DSC	Positive	80%	%
O.I.T. 200°C	ISO 11357	>50	+/- 10%	min

In compliance with UNI 10667-2

IMPORTANT: The information and data contained herein are provided as general information which may be of potential use for the product concerned. They are based on our knowledge at the time of publication. Since the product can be used in different ways by our customers, Valsir S.p.A., shall in no way be held responsible for the results that may be obtained from the transformer using the product in their production processes either alone or in combination with other substances. The information contained herein shall in no event be regarded as a guarantee on the part of assumption of Valsir S.p.A.. The end user must always check the specific suitability of the product for the purposes it is intended for and its compatibility to the specific nature of their production processes. Valsir S.p.A. shall in no event be liable if the purchaser fails to fulfill its obligations due to the recommendations indicated herein.

2. DESCRIPTION OF THE PRODUCTION PROCESSES OF RECYCLING PE COMPOUND

Recycled PE compounds are produced according to the following production process:

In case of rigid plastic waste:

- 1. Selection and accreditation of suppliers and materials.
- 2. Input of raw materials (plastic waste to be treated entirely on our plants or semi-finished products requiring part of our processing).
- 3. Manual sorting of incoming flows if necessary.
- 4. Primary shredding of incoming streams if necessary (T*).
- 5. Secondary grinding, washing, contaminant separation and drying (M+L(1)*).
- 6. Analysis and characterization of each batch of EOW semi-finished product produced: chemical-mechanical characterization of the batches produced and their selection in the recipe according to the desired final composition.
- 7. Compounding, through the extrusion process, of the mix of recycled regrind materials together with the necessary additives to obtain a stable and homogeneous compound.
- 8. Chemical and mechanical analysis and of each silo of the recycled compound produced and verification of the full compliance of the results obtained with the specific customer requests.
- 9. Packaging of the recycled compound in big bags on wooden pallet and protected by a recycled LDPE black anti UV cover. Each big bag is identified with labels and ensured to the pallet with some LLDPE stretch liner. The labels contains all the product traceability information.
- 10. Shipment to the customer.

* See the figure on page 16 relating to the workflow.

Figure Rigid plastic material.

• In case of flexible plastic waste:

- 1. Selection and accreditation of suppliers and materials.
- 2. Input of raw materials (plastic waste to be treated entirely on our plants or semi-finished products requiring part of our processing).
- 3. Manual sorting of incoming flows if necessary.
- 4. Primary shredding of incoming streams if necessary and secondary grinding, washing, contaminant separation and drying (M+L(2)*).
- Analysis and characterization of each batch of EOW semi-finished product produced: chemical-mechanical characterization of the batches produced and their selection in the recipe according to the desired final composition.
 Densitient produced (metaric) and produced and their selection in the recipe according to the desired final composition.
- 6. Densification process (material agglomeration in order to feed the compounding extruders).
- 7. Compounding, through the extrusion process, of the mix of recycled regrind materials together with the necessary additives to obtain a stable and homogeneous compound.
- 8. Chemical and mechanical analysis and of each silo of the recycled compound produced and verification of the full compliance of the results obtained with the specific customer requests.
- 9. Packaging of the recycled compound in big bags on wooden pallet and protected by a recycled LDPE black anti UV cover. Each big bag is identified with labels and ensured to the pallet with some LLDPE stretch liner. The labels contain all the product traceability information.
- 10. Shipment to the customer.
- * See the figure on page 16 relating to the workflow.

Figure Flexible plastic material.

Figure Workflow Recycling division.

3. PRODUCT COMPOSITION

Product PE	% by weight
Recycled Polyethylene	95-99
Masterbatch	<5
Additives	<0.5

Packaging	% by weight
Wooden packaging (pallet)	<2
Plastic packaging (big bag, cover, labels and stretch)	<0.2

Declared Unit

The Declared Unit is defined as 1 kg of recycled PP compound.

PE EST T - LCA RESULTS

The following tables show the results of LCA (Life Cycle Assessment) recycled PE compounds.

Art. 009562 PE EST T

Table Environmental impact per Declared Unit specific - main indicators.

							Ŵ			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
GWP total [kg CO ₂ -eq.]	4.76E-01	7.68E-02	5.33E-02	6.07E-01	0.00E+00	2.02E-09	9.97E-01	2.37E-02	1.02E+00	-6.60E-01
GWP fossil [kg CO ₂ -eq.]	4.70E-01	7.68E-02	2.83E-02	5.76E-01	0.00E+00	2.02E-09	9.96E-01	2.37E-02	1.02E+00	-6.56E-01
GWP biogenic [kg CO ₂ -eq.]	5.93E-03	2.30E-05	2.50E-02	3.09E-02	0.00E+00	6.10E-13	1.47E-04	1.80E-05	1.65E-04	-3.57E-03
GWP luluc [kg CO ₂ -eq.]	7.77E-05	1.49E-06	4.02E-05	1.19E-04	0.00E+00	3.96E-14	1.77E-05	8.80E-07	1.86E-05	-1.82E-04
ODP [kg CFC-11-eq.]	1.02E-08	1.64E-09	1.45E-09	1.33E-08	0.00E+00	4.36E-17	5.83E-09	1.95E-11	5.85E-09	-3.03E-09
AP [mole of H+-eq.]	1.29E-03	1.93E-04	2.28E-04	1.71E-03	0.00E+00	5.26E-12	2.35E-04	1.36E-05	2.49E-04	-2.36E-03
EP - freshwater [kg P eq.]	1.24E-05	5.98E-08	1.60E-06	1.40E-05	0.00E+00	1.59E-15	5.20E-07	2.30E-08	5.43E-07	-1.05E-05
EP - marine [kg N eq.]	2.68E-04	7.45E-05	1.21E-04	4.64E-04	0.00E+00	2.06E-12	1.04E-04	3.50E-05	1.39E-04	-4.22E-04
EP - terrestrial [mole of N eq.]	2.95E-03	7.89E-04	6.47E-04	4.38E-03	0.00E+00	2.18E-11	1.12E-03	5.91E-05	1.18E-03	-4.62E-03
POCP [kg NMVOC eq.]	1.31E-03	3.12E-04	2.43E-04	1.87E-03	0.00E+00	8.49E-12	2.89E-04	2.35E-05	3.12E-04	-2.21E-03
ADPF ⁽¹⁾ [MJ]	7.27E+00	1.01E+00	4.61E-01	8.75E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
ADPE ⁽¹⁾ [kg Sb eq.]	4.98E-08	2.62E-09	2.24E-07	2.76E-07	0.00E+00	6.94E-17	4.47E-09	5.75E-11	4.53E-09	-7.83E-08
WDP ⁽¹⁾ [m ³ world eq.]	1.02E-01	9.27E-04	-7.17E-04	1.03E-01	0.00E+00	2.46E-11	1.02E-02	8.58E-05	1.03E-02	-2.68E-01

(1) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- **ODP** Depletion potential of the stratospheric ozone layer
- AP Acidification potential of land and water
- EP Eutrophication potential
- POCP Formation potential of tropospheric ozone photochemical oxidants
- ADPE Abiotic depletion potential for non fossil resources
- **ADPF** Abiotic depletion potential for fossil resources
- WDP Water (user) deprivation potential, deprivation-weighted water consumption

GWP Global warming potential

Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PM [disease inc.]	1.18E-08	4.35E-09	3.06E-09	1.93E-08	0.00E+00	1.35E-16	1.52E-09	3.16E-10	1.84E-09	-2.37E-08
IRP ⁽¹⁾ [kBq U235 eq]	1.19E-02	1.61E-04	6.05E-04	1.27E-02	0.00E+00	4.27E-12	4.88E-04	2.36E-05	5.11E-04	-8.33E-03
ETP-fw ⁽²⁾ [CTUe]	1.59E+00	4.47E-01	3.05E-01	2.34E+00	0.00E+00	1.19E-08	2.48E+00	1.02E-01	2.58E+00	-1.01E+00
HTP-nc ⁽²⁾ [CTUh]	1.72E-09	4.65E-10	9.63E-09	1.18E-08	0.00E+00	1.43E-17	1.26E-09	5.33E-11	1.31E-09	-1.66E-09
HTPc ⁽²⁾ [CTUh]	1.07E-10	4.98E-12	1.56E-10	2.67E-10	0.00E+00	1.40E-19	1.83E-10	3.47E-13	1.83E-10	-7.36E-11
SQP ⁽²⁾ [Pt]	4.23E-01	1.92E-03	1.80E+00	2.22E+00	0.00E+00	5.10E-11	1.74E-02	4.38E-02	6.12E-02	-2.48E-01

(1) This impact category deals primarily with the possible impact on human health of low-dose ionizing radiation from the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents, occupational exposure or due to the disposal of radioactive waste in underground landfills. Potential ionizing radiation from soil, radon and some building materials are also not assessed by this indicator.

(2) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- PM Particulate matter
- IRP Ionising radiation
- ETP-fw Ecotoxicity freshwater
- HTP-nc Human toxicity non cancer
- HTPc Human toxicity cancer
- SQP Land use

 Table Resource use per Declared Unit.

							Ш			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PERE [MJ]	2.64E-01	2.66E-03	6.77E-02	3.34E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PERM [MJ]	0.00E+00	0.00E+00	2.71E-01	2.71E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT [MJ]	2.64E-01	2.66E-03	3.39E-01	6.06E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PENRE [MJ]	-3.87E+01	1.01E+00	3.17E-01	-3.74E+01	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
PENRM [MJ]	4.60E+01	0.00E+00	1.44E-01	4.61E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT [MJ]	7.27E+00	1.01E+00	4.61E-01	8.75E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
SM [kg]	9.75E-01	0.00E+00	0.00E+00	9.75E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m ³]	2.98E-03	4.23E-05	0.00E+00	3.03E-03	0.00E+00	1.12E-12	4.32E-04	3.51E-06	4.36E-04	-3.76E-03

(1) Reference to only foreground system.

PERE	Use of renewable primary energy as energy carrier
PERM	Use of renewable primary energy as raw materials
PERT	Total use of renewable primary energy resources
PENRE	Use of non-renewable primary energy as energy carrier
PENRM	Use of non-renewable primary energy as raw materials
PENRT	Total use of non-renewable primary energy resources
SM	Use of secondary material
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	Use of net fresh water

Table Environmental impact for waste production and output streams.

							Ē			
Paramete Unit	r - A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
HWD [Kg]	2.32E-05	6.68E-06	1.21E-06	3.11E-05	0.00E+00	1.77E-13	8.44E-07	1.03E-07	9.47E-07	-4.59E-06
NHWD [Kg]	1.62E-02	4.94E-05	6.32E-02	7.94E-02	0.00E+00	1.31E-12	6.72E-03	2.49E-01	2.56E-01	-1.32E-02
RWD [Kg]	8.60E-06	8.68E-08	4.21E-07	9.10E-06	0.00E+00	2.30E-15	3.42E-07	1.48E-08	3.56E-07	-6.23E-06
CRU ^[Kg]	0.00E+00	0.00E+00	3.12E-02	3.12E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR [Kg]	0.00E+00	0.00E+00	1.10E-03	1.10E-03	0.00E+00	0.00E+00	3.25E-01	0.00E+00	3.25E-01	0.00E+00
MER [Kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.26E-01	0.00E+00	4.26E-01	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWD	Hazardous waste	disposed								
NHWD	Non-hazardous w	aste dispos	sed							
RWD	Radioactive waste	e disposed								
CRU	Components for r	re-use								
MFR	Materials for recyc	cling								
MER	Materials for ener	gy recovery								
EEE	Exported electrica	al energy								
EET	Exported thermal	energy								

• Biogenic carbon

The content of biogenic carbon in the product and in the packaging of the finished product was quantified according to the EN 16449:2014 standard.

Biogenic carbon content	PE compound [kg C]
In the product	0,00
In the packaging of the finished product	0,0068

PE INJ - LCA RESULTS

Art. 009563 PE INJ

Table Environmental impact per Declared Unit specific - main indicators.

							Ŵ			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
GWP total [kg CO ₂ -eq.]	5.02E-01	1.36E-01	5.33E-02	6.91E-01	0.00E+00	2.02E-09	9.97E-01	2.37E-02	1.02E+00	-6.60E-01
GWP fossil [kg CO ₂ -eq.]	4.96E-01	1.36E-01	2.83E-02	6.60E-01	0.00E+00	2.02E-09	9.96E-01	2.37E-02	1.02E+00	-6.56E-01
GWP biogenic [kg CO ₂ -eq.]	5.67E-03	4.07E-05	2.50E-02	3.07E-02	0.00E+00	6.10E-13	1.47E-04	1.80E-05	1.65E-04	-3.57E-03
GWP luluc [kg CO ₂ -eq.]	9.57E-05	2.64E-06	4.02E-05	1.39E-04	0.00E+00	3.96E-14	1.77E-05	8.80E-07	1.86E-05	-1.82E-04
ODP [kg CFC-11-eq.]	1.00E-08	2.91E-09	1.45E-09	1.44E-08	0.00E+00	4.36E-17	5.83E-09	1.95E-11	5.85E-09	-3.03E-09
AP [mole of H+-eq.]	1.30E-03	3.41E-04	2.28E-04	1.87E-03	0.00E+00	5.26E-12	2.35E-04	1.36E-05	2.49E-04	-2.36E-03
EP - freshwater [kg P eq.]	1.26E-05	1.06E-07	1.60E-06	1.43E-05	0.00E+00	1.59E-15	5.20E-07	2.30E-08	5.43E-07	-1.05E-05
EP - marine [kg N eq.]	2.92E-04	1.32E-04	1.21E-04	5.45E-04	0.00E+00	2.06E-12	1.04E-04	3.50E-05	1.39E-04	-4.22E-04
EP - terrestrial [mole of N eq.]	3.19E-03	1.40E-03	6.47E-04	5.23E-03	0.00E+00	2.18E-11	1.12E-03	5.91E-05	1.18E-03	-4.62E-03
POCP [kg NMVOC eq.]	1.36E-03	5.52E-04	2.43E-04	2.16E-03	0.00E+00	8.49E-12	2.89E-04	2.35E-05	3.12E-04	-2.21E-03
ADPF ⁽¹⁾ [MJ]	7.01E+00	1.79E+00	4.61E-01	9.26E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
ADPE ⁽¹⁾ [kg Sb eq.]	7.31E-08	4.63E-09	2.24E-07	3.02E-07	0.00E+00	6.94E-17	4.47E-09	5.75E-11	4.53E-09	-7.83E-08
WDP ⁽¹⁾ [m ³ world eq.]	9.93E-02	1.64E-03	-7.17E-04	1.00E-01	0.00E+00	2.46E-11	1.02E-02	8.58E-05	1.03E-02	-2.68E-01

(1) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- GWP Global warming potential
- ODP Depletion potential of the stratospheric ozone layer
- AP Acidification potential of land and water
- EP Eutrophication potential
- POCP Formation potential of tropospheric ozone photochemical oxidants
- ADPE Abiotic depletion potential for non fossil resources
- ADPF Abiotic depletion potential for fossil resources
- WDP Water (user) deprivation potential, deprivation-weighted water consumption

						Ī					
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D	
PM [disease inc.]	1.37E-08	7.70E-09	3.06E-09	2.44E-08	0.00E+00	1.35E-16	1.52E-09	3.16E-10	1.84E-09	-2.37E-08	
IRP ⁽¹⁾ [kBq U235 eq]	1.16E-02	2.85E-04	6.05E-04	1.25E-02	0.00E+00	4.27E-12	4.88E-04	2.36E-05	5.11E-04	-8.33E-03	
ETP-fw ⁽²⁾ [CTUe]	1.67E+00	7.91E-01	3.05E-01	2.77E+00	0.00E+00	1.19E-08	2.48E+00	1.02E-01	2.58E+00	-1.01E+00	
HTP-nc ⁽²⁾ [CTUh]	1.99E-09	8.24E-10	9.63E-09	1.24E-08	0.00E+00	1.43E-17	1.26E-09	5.33E-11	1.31E-09	-1.66E-09	
HTPc ⁽²⁾ [CTUh]	1.50E-10	8.81E-12	1.56E-10	3.15E-10	0.00E+00	1.40E-19	1.83E-10	3.47E-13	1.83E-10	-7.36E-11	
SQP ⁽²⁾ [Pt]	4.14E-01	3.40E-03	1.80E+00	2.22E+00	0.00E+00	5.10E-11	1.74E-02	4.38E-02	6.12E-02	-2.48E-01	

(1) This impact category deals primarily with the possible impact on human health of low-dose ionizing radiation from the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents, occupational exposure or due to the disposal of radioactive waste in underground landfills. Potential ionizing radiation from soil, radon and some building materials are also not assessed by this indicator.

(2) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- PM Particulate matter
- IRP Ionising radiation
- ETP-fw Ecotoxicity freshwater
- HTP-nc Human toxicity non cancer
- HTPc Human toxicity cancer
- SQP Land use

Table Resource use per Declared Unit.

							Ŵ			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PERE [MJ]	2.61E-01	4.71E-03	6.77E-02	3.34E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PERM [MJ]	0.00E+00	0.00E+00	2.71E-01	2.71E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT [MJ]	2.61E-01	4.71E-03	3.39E-01	6.05E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PENRE [MJ]	-3.90E+01	1.79E+00	3.17E-01	-3.69E+01	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
PENRM [MJ]	4.60E+01	0.00E+00	1.44E-01	4.61E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT [MJ]	7.01E+00	1.79E+00	4.61E-01	9.26E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
SM [kg]	9.79E-01	0.00E+00	0.00E+00	9.79E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m ³]	2.93E-03	7.49E-05	0.00E+00	3.00E-03	0.00E+00	1.12E-12	4.32E-04	3.51E-06	4.36E-04	-3.76E-03

(1) Reference to only foreground system.

PERE	Use of renewable primary energy as energy carrier
PERM	Use of renewable primary energy as raw materials
PERT	Total use of renewable primary energy resources
PENRE	Use of non-renewable primary energy as energy carrier
PENRM	Use of non-renewable primary energy as raw materials
PENRT	Total use of non-renewable primary energy resources
SM	Use of secondary material
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	Use of net fresh water

Table Environmental impact for waste production and output streams.

							Ŵ			
Paramete Unit	r- A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
HWD [Kg]	2.33E-05	1.18E-05	1.21E-06	3.63E-05	0.00E+00	1.77E-13	8.44E-07	1.03E-07	9.47E-07	-4.59E-06
NHWD [Kg]	2.40E-02	8.73E-05	6.32E-02	8.73E-02	0.00E+00	1.31E-12	6.72E-03	2.49E-01	2.56E-01	-1.32E-02
RWD [Kg]	8.42E-06	1.54E-07	4.21E-07	8.99E-06	0.00E+00	2.30E-15	3.42E-07	1.48E-08	3.56E-07	-6.23E-06
CRU [Kg]	0.00E+00	0.00E+00	3.12E-02	3.12E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR [Kg]	0.00E+00	0.00E+00	1.14E-03	1.14E-03	0.00E+00	0.00E+00	3.25E-01	0.00E+00	3.25E-01	0.00E+00
MER [Kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.26E-01	0.00E+00	4.26E-01	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWD	Hazardous waste	disposed								
NHWD	Non-hazardous w	aste dispos	sed							
RWD	Radioactive waste	e disposed								
CRU	Components for r	re-use								
MFR	Materials for recyc	cling								
MER	Materials for ener	gy recovery								
EEE	Exported electrica	al energy								
EET	Exported thermal	energy								

• Biogenic carbon

The content of biogenic carbon in the product and in the packaging of the finished product was quantified according to the EN 16449:2014 standard.

Biogenic carbon content	PE compound [kg C]						
In the product	0,00						
In the packaging of the finished product	0,0068						

PE R - LCA RESULTS

Art. 009564 PE R

Table Environmental impact per Declared Unit specific - main indicators.

							Ē			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
GWP total [kg CO ₂ -eq.]	4.86E-01	5.97E-02	5.33E-02	5.99E-01	0.00E+00	2.02E-09	9.97E-01	2.37E-02	1.02E+00	-6.60E-01
GWP fossil [kg CO ₂ -eq.]	4.80E-01	5.97E-02	2.83E-02	5.68E-01	0.00E+00	2.02E-09	9.96E-01	2.37E-02	1.02E+00	-6.56E-01
GWP biogenic [kg CO ₂ -eq.]	5.87E-03	1.79E-05	2.50E-02	3.09E-02	0.00E+00	6.10E-13	1.47E-04	1.80E-05	1.65E-04	-3.57E-03
GWP luluc [kg CO ₂ -eq.]	8.16E-05	1.16E-06	4.02E-05	1.23E-04	0.00E+00	3.96E-14	1.77E-05	8.80E-07	1.86E-05	-1.82E-04
ODP [kg CFC-11-eq.]	1.02E-08	1.28E-09	1.45E-09	1.29E-08	0.00E+00	4.36E-17	5.83E-09	1.95E-11	5.85E-09	-3.03E-09
AP [mole of H+-eq.]	1.31E-03	1.50E-04	2.28E-04	1.69E-03	0.00E+00	5.26E-12	2.35E-04	1.36E-05	2.49E-04	-2.36E-03
EP - freshwater [kg P eq.]	1.21E-05	4.65E-08	1.60E-06	1.37E-05	0.00E+00	1.59E-15	5.20E-07	2.30E-08	5.43E-07	-1.05E-05
EP - marine [kg N eq.]	2.76E-04	5.80E-05	1.21E-04	4.55E-04	0.00E+00	2.06E-12	1.04E-04	3.50E-05	1.39E-04	-4.22E-04
EP - terrestrial [mole of N eq.]	3.03E-03	6.13E-04	6.47E-04	4.29E-03	0.00E+00	2.18E-11	1.12E-03	5.91E-05	1.18E-03	-4.62E-03
POCP [kg NMVOC eq.]	1.35E-03	2.42E-04	2.43E-04	1.83E-03	0.00E+00	8.49E-12	2.89E-04	2.35E-05	3.12E-04	-2.21E-03
ADPF ⁽¹⁾ [MJ]	7.45E+00	7.87E-01	4.61E-01	8.70E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
ADPE ⁽¹⁾ [kg Sb eq.]	5.41E-08	2.03E-09	2.24E-07	2.80E-07	0.00E+00	6.94E-17	4.47E-09	5.75E-11	4.53E-09	-7.83E-08
WDP ⁽¹⁾ [m ³ world eq.]	1.02E-01	7.20E-04	-7.17E-04	1.02E-01	0.00E+00	2.46E-11	1.02E-02	8.58E-05	1.03E-02	-2.68E-01

(1) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- GWP Global warming potential
- ODP Depletion potential of the stratospheric ozone layer
- AP Acidification potential of land and water
- **EP** Eutrophication potential
- POCP Formation potential of tropospheric ozone photochemical oxidants
- ADPE Abiotic depletion potential for non fossil resources
- ADPF Abiotic depletion potential for fossil resources
- WDP Water (user) deprivation potential, deprivation-weighted water consumption

Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PM [disease inc.]	1.28E-08	3.38E-09	3.06E-09	1.92E-08	0.00E+00	1.35E-16	1.52E-09	3.16E-10	1.84E-09	-2.37E-08
IRP ⁽¹⁾ [kBq U235 eq]	1.18E-02	1.25E-04	6.05E-04	1.26E-02	0.00E+00	4.27E-12	4.88E-04	2.36E-05	5.11E-04	-8.33E-03
ETP-fw ⁽²⁾ [CTUe]	1.65E+00	3.47E-01	3.05E-01	2.30E+00	0.00E+00	1.19E-08	2.48E+00	1.02E-01	2.58E+00	-1.01E+00
HTP-nc ⁽²⁾ [CTUh]	1.78E-09	3.62E-10	9.63E-09	1.18E-08	0.00E+00	1.43E-17	1.26E-09	5.33E-11	1.31E-09	-1.66E-09
HTPc ⁽²⁾ [CTUh]	1.14E-10	3.87E-12	1.56E-10	2.74E-10	0.00E+00	1.40E-19	1.83E-10	3.47E-13	1.83E-10	-7.36E-11
SQP ⁽²⁾ [Pt]	4.20E-01	1.50E-03	1.80E+00	2.22E+00	0.00E+00	5.10E-11	1.74E-02	4.38E-02	6.12E-02	-2.48E-01

(1) This impact category deals primarily with the possible impact on human health of low-dose ionizing radiation from the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents, occupational exposure or due to the disposal of radioactive waste in underground landfills. Potential ionizing radiation from soil, radon and some building materials are also not assessed by this indicator.

(2) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- PM Particulate matter
- IRP Ionising radiation
- ETP-fw Ecotoxicity freshwater
- HTP-nc Human toxicity non cancer
- HTPc Human toxicity cancer
- SQP Land use

Table Resource use per Declared Unit.

							Ш			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PERE [MJ]	2.63E-01	2.07E-03	6.77E-02	3.33E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PERM [MJ]	0.00E+00	0.00E+00	2.71E-01	2.71E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT [MJ]	2.63E-01	2.07E-03	3.39E-01	6.04E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PENRE [MJ]	-3.86E+01	7.87E-01	3.17E-01	-3.74E+01	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
PENRM [MJ]	4.60E+01	0.00E+00	1.44E-01	4.61E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT [MJ]	7.45E+00	7.87E-01	4.61E-01	8.70E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
SM [kg]	9.73E-01	0.00E+00	0.00E+00	9.73E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m ³]	2.97E-03	3.29E-05	0.00E+00	3.00E-03	0.00E+00	1.12E-12	4.32E-04	3.51E-06	4.36E-04	-3.76E-03

(1) Reference to only foreground system.

PERE	Use of renewable primary energy as energy carrier
PERM	Use of renewable primary energy as raw materials
PERT	Total use of renewable primary energy resources
PENRE	Use of non-renewable primary energy as energy carrier
PENRM	Use of non-renewable primary energy as raw materials
PENRT	Total use of non-renewable primary energy resources
SM	Use of secondary material
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	Use of net fresh water

Table Environmental impact for waste production and output streams.

							Ē			
Parameter Unit	r - A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
HWD [Kg]	2.38E-05	5.19E-06	1.21E-06	3.02E-05	0.00E+00	1.77E-13	8.44E-07	1.03E-07	9.47E-07	-4.59E-06
NHWD [Kg]	1.76E-02	3.84E-05	6.32E-02	8.08E-02	0.00E+00	1.31E-12	6.72E-03	2.49E-01	2.56E-01	-1.32E-02
RWD [Kg]	8.53E-06	6.75E-08	4.21E-07	9.02E-06	0.00E+00	2.30E-15	3.42E-07	1.48E-08	3.56E-07	-6.23E-06
CRU [Kg]	0.00E+00	0.00E+00	3.12E-02	3.12E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR [Kg]	0.00E+00	0.00E+00	7.10E-03	7.10E-03	0.00E+00	0.00E+00	3.25E-01	0.00E+00	3.25E-01	0.00E+00
MER [Kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.26E-01	0.00E+00	4.26E-01	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWD	Hazardous waste	disposed								
NHWD	Non-hazardous w	vaste dispos	sed							
RWD	Radioactive waste	e disposed								
CRU	Components for r	e-use								
MFR	Materials for recyc	cling								
MER	Materials for ener	gy recovery								
EEE	Exported electrica	al energy								
EET	Exported thermal	energy								

• Biogenic carbon

The content of biogenic carbon in the product and in the packaging of the finished product was quantified according to the EN 16449:2014 standard.

Biogenic carbon content	PE compound [kg C]
In the product	0,00
In the packaging of the finished product	0,0068

SOFF N - LCA RESULTS

Art. 009697 PE SOFF N

Table Environmental impact per Declared Unit specific - main indicators.

							Ē			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
GWP total [kg CO ₂ -eq.]	5.51E-01	1.11E-01	5.33E-02	7.15E-01	0.00E+00	2.02E-09	9.97E-01	2.37E-02	1.02E+00	-6.60E-01
GWP fossil [kg CO ₂ -eq.]	5.45E-01	1.11E-01	2.83E-02	6.85E-01	0.00E+00	2.02E-09	9.96E-01	2.37E-02	1.02E+00	-6.56E-01
GWP biogenic [kg CO ₂ -eq.]	5.26E-03	3.32E-05	2.50E-02	3.03E-02	0.00E+00	6.10E-13	1.47E-04	1.80E-05	1.65E-04	-3.57E-03
GWP luluc [kg CO ₂ -eq.]	1.30E-04	2.15E-06	4.02E-05	1.72E-04	0.00E+00	3.96E-14	1.77E-05	8.80E-07	1.86E-05	-1.82E-04
ODP [kg CFC-11-eq.]	9.71E-09	2.38E-09	1.45E-09	1.35E-08	0.00E+00	4.36E-17	5.83E-09	1.95E-11	5.85E-09	-3.03E-09
AP [mole of H+-eq.]	1.30E-03	2.78E-04	2.28E-04	1.81E-03	0.00E+00	5.26E-12	2.35E-04	1.36E-05	2.49E-04	-2.36E-03
EP - freshwater [kg P eq.]	1.29E-05	8.64E-08	1.60E-06	1.46E-05	0.00E+00	1.59E-15	5.20E-07	2.30E-08	5.43E-07	-1.05E-05
EP - marine [kg N eq.]	3.38E-04	1.08E-04	1.21E-04	5.66E-04	0.00E+00	2.06E-12	1.04E-04	3.50E-05	1.39E-04	-4.22E-04
EP - terrestrial [mole of N eq.]	3.66E-03	1.14E-03	6.47E-04	5.44E-03	0.00E+00	2.18E-11	1.12E-03	5.91E-05	1.18E-03	-4.62E-03
POCP [kg NMVOC eq.]	1.44E-03	4.50E-04	2.43E-04	2.13E-03	0.00E+00	8.49E-12	2.89E-04	2.35E-05	3.12E-04	-2.21E-03
ADPF ⁽¹⁾ [MJ]	6.07E+00	1.46E+00	4.61E-01	7.99E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
ADPE ⁽¹⁾ [kg Sb eq.]	1.22E-07	3.78E-09	2.24E-07	3.50E-07	0.00E+00	6.94E-17	4.47E-09	5.75E-11	4.53E-09	-7.83E-08
WDP ⁽¹⁾ [m ³ world eq.]	9.35E-02	1.34E-03	-7.17E-04	9.41E-02	0.00E+00	2.46E-11	1.02E-02	8.58E-05	1.03E-02	-2.68E-01

(1) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- GWP Global warming potential
- ODP Depletion potential of the stratospheric ozone layer
- AP Acidification potential of land and water
- **EP** Eutrophication potential
- POCP Formation potential of tropospheric ozone photochemical oxidants
- ADPE Abiotic depletion potential for non fossil resources
- ADPF Abiotic depletion potential for fossil resources
- WDP Water (user) deprivation potential, deprivation-weighted water consumption

Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PM [disease inc.]	1.68E-08	6.29E-09	3.06E-09	2.61E-08	0.00E+00	1.35E-16	1.52E-09	3.16E-10	1.84E-09	-2.37E-08
IRP ⁽¹⁾ [kBq U235 eq]	1.13E-02	2.33E-04	6.05E-04	1.21E-02	0.00E+00	4.27E-12	4.88E-04	2.36E-05	5.11E-04	-8.33E-03
ETP-fw ⁽²⁾ [CTUe]	1.75E+00	6.45E-01	3.05E-01	2.70E+00	0.00E+00	1.19E-08	2.48E+00	1.02E-01	2.58E+00	-1.01E+00
HTP-nc ⁽²⁾ [CTUh]	2.55E-09	6.72E-10	9.63E-09	1.29E-08	0.00E+00	1.43E-17	1.26E-09	5.33E-11	1.31E-09	-1.66E-09
HTPc ⁽²⁾ [CTUh]	2.45E-10	7.19E-12	1.56E-10	4.08E-10	0.00E+00	1.40E-19	1.83E-10	3.47E-13	1.83E-10	-7.36E-11
SQP ⁽²⁾ [Pt]	4.05E-01	2.78E-03	1.80E+00	2.21E+00	0.00E+00	5.10E-11	1.74E-02	4.38E-02	6.12E-02	-2.48E-01

(1) This impact category deals primarily with the possible impact on human health of low-dose ionizing radiation from the nuclear fuel cycle. It does not consider the effects due to possible nuclear accidents, occupational exposure or due to the disposal of radioactive waste in underground landfills. Potential ionizing radiation from soil, radon and some building materials are also not assessed by this indicator.

(2) The results of this indicator should be used with caution given their high uncertainty or limited experience with the indicator itself.

- PM Particulate matter
- IRP Ionising radiation
- ETP-fw Ecotoxicity freshwater
- HTP-nc Human toxicity non cancer
- HTPc Human toxicity cancer
- SQP Land use

Table Resource use per Declared Unit.

							Ш			
Parameter - Unit	A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
PERE [MJ]	2.58E-01	3.84E-03	6.77E-02	3.30E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PERM [MJ]	0.00E+00	0.00E+00	2.71E-01	2.71E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT [MJ]	2.58E-01	3.84E-03	3.39E-01	6.01E-01	0.00E+00	7.06E-11	1.50E-02	6.91E-04	1.57E-02	-2.72E-01
PENRE [MJ]	-3.99E+01	1.46E+00	3.17E-01	-3.82E+01	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
PENRM [MJ]	4.60E+01	0.00E+00	1.44E-01	4.61E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT [MJ]	6.07E+00	1.46E+00	4.61E-01	7.99E+00	0.00E+00	2.69E-08	1.59E-01	1.99E-02	1.78E-01	-2.33E+01
SM [kg]	9.95E-01	0.00E+00	0.00E+00	9.95E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF ⁽¹⁾ [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m ³]	2.85E-03	6.11E-05	0.00E+00	2.91E-03	0.00E+00	1.12E-12	4.32E-04	3.51E-06	4.36E-04	-3.76E-03

(1) Reference to only foreground system.

PERE	Use of renewable primary energy as energy carrier
PERM	Use of renewable primary energy as raw materials
PERT	Total use of renewable primary energy resources
PENRE	Use of non-renewable primary energy as energy carrier
PENRM	Use of non-renewable primary energy as raw materials
PENRT	Total use of non-renewable primary energy resources
SM	Use of secondary material
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	Use of net fresh water

Table Environmental impact for waste production and output streams.

							Ē			
Parameter Unit	r - A1	A2	A3	A1-A3	C1	C2	C3	C4	C1-C4	D
HWD [Kg]	2.32E-05	9.65E-06	1.21E-06	3.40E-05	0.00E+00	1.77E-13	8.44E-07	1.03E-07	9.47E-07	-4.59E-06
NHWD [Kg]	4.09E-02	7.13E-05	6.32E-02	1.04E-01	0.00E+00	1.31E-12	6.72E-03	2.49E-01	2.56E-01	-1.32E-02
RWD [Kg]	8.23E-06	1.25E-07	4.21E-07	8.77E-06	0.00E+00	2.30E-15	3.42E-07	1.48E-08	3.56E-07	-6.23E-06
CRU [Kg]	0.00E+00	0.00E+00	3.12E-02	3.12E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR [Kg]	0.00E+00	0.00E+00	8.30E-03	8.30E-03	0.00E+00	0.00E+00	3.25E-01	0.00E+00	3.25E-01	0.00E+00
MER [Kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.26E-01	0.00E+00	4.26E-01	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWD	Hazardous waste	disposed								
NHWD	Non-hazardous w	aste dispos	sed							
RWD	Radioactive waste disposed									
CRU	Components for re-use									
MFR	Materials for recyc	cling								
MER	Materials for ener	gy recovery								
EEE	Exported electrica	al energy								
EET	Exported thermal energy									

• Biogenic carbon

The content of biogenic carbon in the product and in the packaging of the finished product was quantified according to the EN 16449:2014 standard.

Biogenic carbon content	PE compound [kg C]
In the product	0,00
In the packaging of the finished product	0,0068

REFERENCES

ISO 14040:2021	Environmental management - Life cycle assessment - Principles and framework.
ISO 14044:2021	Environmental management - Life cycle assessment - Requirements and guidelines.
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures.
EN 16449:2014	Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.
EN 15804:2012 +A2:2019/AC:2021	Sustainability of constructions - Environmental product declarations - Fundamental development rules by product category.
REPORT LCA_ REV.01	"Life cycle analysis of PE compounds e recycled PP compounds" Valsir recycling 19/06/2024. Written by Greenwich S.r.I.
PCR ICMQ 3.0	PCR for construction products: ICMQ-001/15 rev 3 (compliant with EN 15804:2012+A2:2019/ AC:2021).
REGOLAMENTO EPDITALY V.6	Regulations of the EPDItaly program Revision 6.0. Issue date 10/30/2023.
EUROSTAT	https://www.europarl.europa.eu/topics/it/article/20181212STO21610/rifiuti-di-plastica-e- riciclaggio-nell-ue-i-numeri-e-i-fatti

See. 2

COMPOUNDS

REGRIND MATERIALS

PALLETS

VALSIR S.p.A. - Società a Socio Unico Recycling Division Via Comunale, 99, Fraz. Carpeneda 25079 Vobarno (BS) - Italy Tel. +39 0365 598.794 -Fax +39 0365 879.370 E-mail: recycling@valsir.it

www.valsir-recycling.it

Soggetta all'attività di direzione e coordinamento ex art. 2497 bis C.C. da parte di Silmar Group S.p.A. - Codice Fiscale 02075160172